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Three-dimensional (3D) trees, which are defined as a 3D extension of trees, are
enumerated by Fujita’s proligand method (Fujita, Theor. Chem. Acc. 113 (2005) 73–79
and 80–86; 115 (2006) 37–53). Such 3D-trees are dually recognized as uninuclear pro-
molecules and as binuclear ones. The 3D-trees regarded as uninuclear promolecules are
enumerated to give the gross number of 3D-trees, which suffers from redundancy due
to contaminants. To evaluate the number of such contaminants, the 3D-trees are alter-
natively enumerated as binuclear promolecules. Cycle indices with chirality fittingness
(CI-CFs) composed of three kinds of sphericity indices (SIs), i.e., ad for homospher-
ic cycles, cd for enantiospheric cycles, and bd for hemispheric cycles are obtained for
evaluating promolecules of the two kinds. The CI-CFs for the uninuclear promolecules
and those for the related binuclear promolecules are compared in terms of the dichot-
omy between balanced 3D-trees and unbalanced 3D-trees. Thereby, the redundancy due
to such contaminants is deleted effectively so as to give the net number of 3D-trees.
The validity of this procedure is proved in three ways, all of which are based on the
respective modes of the correspondence between uninuclear promolecules and binucle-
ar ones. In order to enumerate 3D-trees by following this procedure, the CI-CFs are
converted into functional equations by substituting the SIs for a(xd ), c(xd ), and b(xd ).
Thereby, the numbers of 3D-trees or equivalently those of alkanes as stereoisomers are
calculated under various conditions and collected up to 20 carbon content in a tabu-
lar form. Now, the stereochemical problems (on the number of stereoisomers) by van’t
Hoff (van’t Hoff, Arch. Néerlandaises des Sci. Exactes et Nat, 9 (1874) 445–454) and
by LeBel (Le Bel, Bull. Soc. Chim. Fr. (2), 22 (1874) 337–347) and the enumeration
problems (on the number of trees) by Cayley (Cayley, Philos. Mag. 47 (1874) 444–446),
both initiated in the 1870s, have been solved in a common theoretical framework, which
satisfies both chemical and mathematical requirements.
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1. Introduction

Since van’t Hoff [1] and LeBel [2] founded stereochemistry in the 1870s,
the enumeration of stereoisomers has been one of the central problems, as
found by the fact that van’t Hoff himself [1] already discussed the number of
stereoisomers having n asymmetric carbons. In the same 1870s, on the other
hand, combinatorial enumeration of trees as models of alkanes was initiated by
a mathematician Cayley [3,4]. Although Cayley already recognized such trees as
models of isomers of alkanes [4], his work as well as most successive works on
the combinatorial enumeration regarded isomers as graphs, not as three-dimen-
sional (3D) objects (i.e., stereoisomers), as found in reviews [5–8] and books
[9–12]. For example, Henze and Blair [13] reported the number of alkanes of
a given carbon content, where the alkanes were regarded as graphs. Pólya [14,
15] applied his main theorem (Hauptsatz) to the evaluation of the number of
trees as graphs by using alternating groups and symmetric groups. Although
the use of the alternating groups was claimed to be capable of counting spatial
isomers in terms of Pólya’s treatment, it was conceptually impossible to distin-
guish between achiral stereoisomers and two enantiomers of chiral ones as well
as to comprehend stereochemical problems on pseudoasymmetry and meso-com-
pounds, as discussed in our recent papers [16–18]. Although Robinson et al. [19]
has reported the enumeration of alkanes as stereoisomers by modifying Pólya’s
cycle indices (CIs), it is still desirable to develop a more systematic method for
comprehending the stereochemical problems.

In the enumeration of stereoisomers (more generally than alkanes or trees
as 3D-objects), the non-rigidity of skeletons for deriving such stereoisomers
makes it difficult to recognize congruence between two stereoisomers. Because
free rotations around bonds (edges) cause multiple (or in fact infinite) confor-
mational changes, it is obviously impossible to compare such multiple or infi-
nite number of conformers. To avoid this type of difficulty, we have proposed the
concepts of proligands and promolecules [20–22], by which the multiple or infinite
number of conformers can be replaced by a single promolecule without confor-
mational changes and the symmetries of the conformers can be limited within
the point-group symmetry of the promolecule.

Even though the difficulty due to multiple conformational changes is
avoided by introducing the concepts of proligands and promolecules, there exists
a further difficulty which stems from the inner structures of stereoisomers as
3D-objects. This type of difficulty is closely related to the stereochemical prob-
lems on pseudoasymmetry and meso-compounds. To avoid the difficulty, we have
developed the USCI (unit-subduced-cycle-index) approach by means of algebraic
derivation [23–26] as well as by means of a diagrammatical formulation [27–29].
The crux of Fujita’s USCI approach is the concept of sphericities of orbits gov-
erned by coset representations.
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Figure 1. 3D-Trees of various expressions. A 3D-tree with vertices and edges (1), a full expression
as an alkane (2), and a carbon-skeletal expression as an alkane (3).

By the integration of the concepts of proligands and promolecules
[20–22] and the concept of sphericities [23], we have recently proposed the proli-
gand method for enumerating stereoisomers [16–18]. To accomplish the enumera-
tion of alkanes, the nested nature appearing in the structures of alkanes should
be investigated by extending the proligand method.

The present paper is devoted to the enumeration of three-dimensional trees
(3D-trees) as models of alkanes. Thus, such 3D-trees formulated by using the
concepts of proligands and promolecules will be discussed in terms of dual rec-
ognition as uninuclear and binuclear promolecules. Thereby, 3D-trees will be cat-
egorized into balanced and unbalanced 3D-trees, the numbers of which will be
evaluated distinctly by using generating functions based on Fujita’s proligand
method.

2. Characterization of 3D-trees as promolecules

2.1. 3D-trees and alkanes

A 3D-tree is defined as a 3D version of a tree, which is in turn defined usu-
ally as a graph having v vertices and e edges, where they satisfy the relationship
v = e + 1. Various expressions of such 3D-trees are shown in figure 1, where the
degree of each non-terminal vertex is presumed to be equal to 4 in accord with
the tetravalency of a carbon atom.

The first formula (1) expresses a 3D-version of a usual tree, where each ver-
tex is represented by an open circle and each edge is represented by a wedge, a
boldface hashed line, and a straight line to show the configuration of each non-
terminal vertex. The term configuration comes from a chemical origin to denote a
spatial arrangement around a vertex. In accord with chemical conventions, each
wedge denotes an edge (bond) situated in the front side out of the page, each
boldface hashed line denotes an edge (bond) situated in the back side of the
page, and each straight line denotes an edge (bond) laid in the page. The sec-
ond formula (2) shows the chemical counterpart of 1, where each non-terminal
vertex is regarded as a carbon atom and each terminal vertex is regarded as a
hydrogen atom. This formula expresses 2-methylpentane, which is one of alkanes
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of carbon content 6. The third formula (3) expresses the carbon-skeleton of 2. In
this formula, the configuration of each carbon center is not expressed explicitly
because it is unnecessary to this case.

Throughout this paper, carbon-skeletal expressions of the third type are
employed where a wedge, a boldface hashed line, and/or a straight line are used
to show the configuration of each non-terminal vertex if necessary. For the sake
of simplicity, such carbon-skeletal expressions are referred to as 3D-trees in a
mathematical context and as alkanes in a chemical context.

2.2. 3D-trees as uninuclear and binuclear promolecules

By applying the concepts of proligands and promolecules [20–22] to
3D-trees, two type of promolecules, i.e., uninuclear promolecules and binucle-
ar promolecules, can be simultaneously or dually ascribed to a 3D-tree, because
each 3D-tree is composed of vertices and edges.

A given 3D-tree is regarded as a uninuclear promolecule when an appropri-
ate vertex is selected as a nucleus (•). For example, the 3D-tree (3) is regarded
as a uninuclear promolecule if the non-terminal vertex denoted by a solid cir-
cle (•) is selected as a nucleus, as shown in 3a (figure 2). By extracting the non-
terminal vertex (denoted by a solid circle • as a nucleus) and its adjacent vertices
(denoted by open circles ◦ as substitution positions), we obtain 4 as a uninuclear
skeleton, where two open circles are added to treat null terminal vertices (chemi-
cally hydrogen atoms). The extracted skeleton having four substitution positions
is a 3D-object belonging to a point group, as shown in 4 (e.g., Td for a tetra-
hedral skeleton). During this process, there appear two planted 3D-trees 5 (an
isopropyl ligand) and 6 (an ethyl ligand) as well as two trivial planted 3D-trees
(•—◦). After they are regarded as achiral proligands (X and Y), we obtain the
corresponding promolecule (7). It should be noted that the presence of null ver-
tices (chemically hydrogen atoms) plays a critical role if configurations are taken
into consideration.

A given 3D-tree is alternatively regarded as a binuclear promolecule when
an appropriate edge is selected as a binucleus. The term binucleus is here coined
to denote an edge with two vertices. For example, the 3D-tree (3) is alterna-
tively regarded as a binuclear promolecule if the adjacent non-terminal vertices
denoted by open circles (◦) are selected as a binucleus, as shown in 3b (figure 2).
By extracting the non-terminal vertices (◦) (as substitution positions), we obtain
a binuclear skeleton 8. The extracted skeleton having two substitution positions
is a 3D-object belonging to a point group (D∞h or its factor group D∞h/C∞).
During this process, two 3D-planted trees 9 and 10 appear as substituents. After
they are regarded as achiral proligands (X and Z), we obtain the corresponding
binuclear promolecule (11).
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Figure 2. Dual recognition of a 3D-tree (3) as a uninuclear promolecule (3a or 7) and a binuclear
one (3b or 11).

Both the uninuclear promolecule (7) and the binuclear promolecule (11)
correspond to a single 3D-tree 3. The dual recognition via 3a and 3b are differ-
ent only in the criteria of selection, i.e., a vertex or an edge. However, the
congruence between the uninuclear promolecule (7) and the binuclear one (11)
cannot be formulated within equivalency due to point-group symmetries (Td ver-
sus D∞h). It is the next task to develop a methodology to formulate such con-
gruence as untreatable by point-group symmetries.

2.3. Congruence between uninuclear promolecules and binuclear ones

To make such congruence treatable, let us apply the procedure described
in figure 2 to every vertices and every edges in the 3D-tree (3). The resulting
uninuclear and binuclear promolecules are listed in figure 3. Because equiva-
lent vertices generate uninuclear promolecules equivalent under the action of the
automorphism group of the relevant skeletons (e.g., G = Td ), the resulting uni-
nuclear promolecules are regarded as being equivalent so as to be depicted as a
single uninuclear promolecule. For example, the promolecule 17 (corresponding
to 12) is derived from the tetrahedral skeleton shown in 30 by placing p on posi-
tion 1 and null ligands (or hydrogen atoms) on positions 2–4 as substituents. If
we select the other vertex equivalent to the nucleus for 17 (i.e., the vertex inci-
dent to the wedge-shaped edge), a promolecule equivalent to 17 is generated. The
other promolecules (13–16) generated by other modes of substitution should be
regarded as being equivalent to 17, although they are not superposable under the
action of Td .

Suppose that uninuclear promolecules, the number of which is equal to
u∗, are so equivalent (congruent) as to be regarded as a single 3D-object and
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Figure 3. Uninuclear 3D-trees (12–16) and binuclear 3D-trees (26–29) as well as uninuclear promol-
ecules (17–21) and binuclear promolecules (22–25) for characterizing an unbalanced 3D-tree (3).

to be counted just once in stereoisomer enumeration. To discuss the congru-
ence between such uninuclear promolecules as relevant to a single 3D-tree, the
first approach described in this section does not use their automorphism groups
explicitly, but, instead, use the correspondence between uninuclear promolecules
and binuclear promolecules.

It should be noted that the promolecule 17 (corresponding to 12) contains
a chiral proligand p (i.e., an R-1-methyl-1-butyl ligand or R-CH(CH3)CH2CH2
CH3). Because the nucleus selected (i.e., the terminal methyl vertex) in 17 is the
same as the other methyl contained in p, the uninuclear promolecule 17 is glob-
ally regarded as being achiral (cf. 3). Thus, there are cases in which an achiral
promolecule has a chiral proligand if it is regarded as a uninuclear promolecule.
Because the present treatment counts a pair of enantiomers just once, the proli-
gand p is depicted as a representative of a pair of p and its enantiomer proligand
(p).

From a viewpoint of combinatorial enumeration, the uninuclear promole-
cules (17–21) are generated from the skeleton (30) by placing four substituents
selected from a set of proligands:

X = {p, X1, X2, X3, X4, X5, X6}, (1)

where we place

p (p) = R/S-CH(CH3)CH2CH2CH3, x5,
X1 = CH3, x ,
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X2 = CH2CH2CH3, x3,
X3 = CH(CH3)2, x3,
X4 = CH2CH3, x2,
X5 = CH2CH(CH3)2, x4,
X6 = CH2CH2CH(CH3)2, x5.

When the carbon content of each proligand is taken into consideration, the
uninuclear promolecules (17) is characterized by the term x × (x0)3 · x5 (=x6)
because of the presence of three null proligands (i.e., hydrogen atoms) and the
proligand p (x5); the uninuclear promolecules (18) is characterized by the term
x × x0 · x2 · x3 (=x6) because of the presence of one null proligand and two proli-
gands X1 (x) and X2 (x3); the uninuclear promolecules (19) is characterized by
the term x×(x0)2·x3·x2 (=x6) because of the presence of two null proligands and
two proligands X3 (x3) and X4 (x2); the uninuclear promolecules (20) is char-
acterized by the term x × (x0)2 · x · x4 (=x6) because of the presence of two
null proligands and two proligands X1 (x) and X5 (x4); and finally the uninu-
clear promolecules (21) is characterized by the term x × (x0)3 · x5 (=x6) because
of the presence of three null proligands and the proligand X6 (x5). Thus, they
are characterized by the term x6 in accord with their carbon content 6. Because
the uninuclear promolecules (17–21) represent a single 3D-tree (3), they should
be counted just once (figure 4).

Let Gk be the number of uninuclear promolecules of carbon content k,
where the automorphism group G(= Td in this case) is taken into consideration.
The corresponding counting series is represented as follows:

G(x) =
∞∑

k=1

Gk xk . (2)

Then the generating function G(x) is evaluated by using the automorphism
group G(= Td in this case). As found easily in figure 3, a single 3D-tree (e.g., 3)
corresponds to u∗ of uninuclear promolecules, which are counted separately so
as to contribute to the value Gk .

On the other hand, binuclear promolecules generated from equivalent edges
as binuclei are equivalent under the action of the automorphism group of the

Figure 4. Uninuclear and binuclear skeletons.
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relevant skeleton (e.g., D∞h or D∞h/C∞). According to their equivalency, they
should be be depicted as a single binuclear promolecule. For example, the pro-
molecule 22 (corresponding to 26) is derived from the binuclear skeleton shown
in 31 by placing X1 on position 1 and p on position 2 as substituents. Another
promolecule generated by another mode of placing the substituents are regarded
as being equivalent to 22 under the action of D∞h (or D∞h/C∞). Even if we
select the other edge equivalent to the binuclear for 22 (i.e., the wedge-shaped
edge in 26), a promolecule equivalent to 22 is generated so that the same situa-
tion holds true. By placing proligands selected from the set X (equation 1) on the
vertices of the binuclear skeleton (31), we obtain b∗ promolecules (22–25), which
are so equivalent as to be regarded as a single 3D-object and to be counted just
once in stereoisomer enumeration.

The binuclear promolecules (22–25) are generated from the skeleton (31) by
placing two substituents selected from the same set of proligands as shown in
equation 1. Let Ck be the number of 3D-trees of carbon content k. The corre-
sponding counting series is represented as follows:

C(x) =
∞∑

k=1

Ck xk (3)

Then the generating function C(x) is evaluated by using the automorphism
group D∞h (or K = D∞h/C∞). As found easily in figure 3, a single 3D-tree
(e.g., 3) corresponds to b∗ of binuclear promolecules, which are counted sepa-
rately. The number b∗ contributes to the coefficient Ck .

The comparison between the uninuclear promolecules (17–21) and the
binuclear promolecules (22–25) indicates that they are generated by using the
same set of proligands, i.e., X (equation 1). This situation holds true in general,
because the two proligands of each binuclear promolecule appear in either of the
relevant uninuclear promolecules:

Theorem 1. The set of uninuclear promolecules corresponding to a given 3D-tree
and the relevant set of binuclear promolecules are generated by using the same
set of proligands.

This theorem is effective especially in cases of containing chiral proligands. For
example, the congruence between 17 and 22 can be determined even with the
presence of the chiral ligand p.

2.4. The dichotomy of balanced and unbalanced 3D-trees

The first approach to discuss the congruence between such uninuclear pro-
molecules as corresponding to a single 3D-tree is based on the value u∗ − b∗,
which is evaluated by the correspondence between the uninuclear promolecules
and the relevant binuclear ones.
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2.4.1. Balance-edges and balanced 3D-trees
To discuss the relationship between uninuclear promolecules and binuclear

promolecules, we shall define a balance-edge as follows:

Definition 1 (Balance-edge). A balance-edge of a given 3D-tree is defined as an
edge in which the planted tree (or proligand) at one terminal vertex is congruent
to the planted tree (or proligand) at the other terminal vertex.

Edges other than a balance-edge in a given 3D-tree are called slant-edges.
Obviously, a balance-edge is contained in a binuclear promolecule which is

represented by X–X, p–p (p–p), or p–p, where X represents an achiral ligand;
and p and p represent an enantiomeric pair of chiral proligands. On the other
hand, a slant-edge is contained in a binuclear promolecule which is represented
by X–Y, X–p, or p–q, where X and Y represents achiral ligands; and p and q
represent chiral proligands.

A 3D-tree contains at most one balance-edge, because the inconsistency
would occur if two or more balance-edges are present in the 3D-tree. This means
that the presence/absence of such a balance-edge provides a criterion for classi-
fying 3D-trees. Thereby, 3D-trees are classified into two categories:

Definition 2 (Balanced and unbalanced 3D-trees).

1. A balanced 3D-tree is defined as a 3D-tree having a balance-edge.
2. An unbalanced 3D-tree is defined as a 3D-tree which has no balance-edge.

According to the dichotomy described in definition 2, the enumeration of bal-
anced 3D-trees and that of unbalanced 3D-trees are examined distinctly.

It should be emphasized that whether a given 3D-tree is balanced or not
can be determined only by examining it as a binuclear promolecule. According
to the types of balance-edges, such binuclear promolecules as X–X, p–p (p–p),
or p–p are taken into consideration as balanced 3D-trees. Several examples of
balanced trees of carbon content 8 are collected in figure 5, which contains a
3D-tree of meso-type (36).

Before we start the enumeration of balanced 3D-trees, we shall examine
2,3-dimethylhexane (32) as a typical example of balanced trees. The correspond-
ing uninuclear and the binuclear promolecules are shown in figure 6. After the
nuclei are selected as shown by the formulas 37–39, the corresponding uninucle-
ar promolecules 40–42 are constructed. Let u∗ be the number of such uninuclear
promolecules.

On the other hand, by selecting the binuclei as shown by the formulas
46–48, the corresponding binuclear promolecules 43–45 are constructed. Let b∗
be the number of such binuclear promolecules.
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Figure 5. Balance-edges and balanced 3D-trees or alkanes. Each thick line denotes a balance-edge.

Figure 6. Uninuclear 3D-trees (37–39) and binuclear 3D-trees (46–48) as well as uninuclear promol-
ecules (40–42) and binuclear promolecules (43–45) for characterizing a balanced 3D-tree (32).

Because they represent a single balanced 3D-tree, the contribution of the
uninuclear promolecules (40–42) to the number of unbalanced 3D-trees should
be zero, even though the contribution of the uninuclear promolecules (40–42) to
the coefficient Gk is one or more, i.e., u∗. This implies that u∗ − b∗ = 0 for bal-
anced trees.
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Figure 7. Uninuclear 3D-trees (49–52) and binuclear 3D-trees (61–64) as well as uninuclear promol-
ecules (53–56) and binuclear promolecules (57–60) for characterizing a balanced 3D-tree (36).

Instead, one can find easily that only 45 is used to evaluate the number of
balanced trees, although the coefficient Ck is used to evaluate the number (b∗) of
the binuclear promolecules (43–45).

Let us next examine 3,5-dimethylhexane (36) as an example of balanced
trees of meso-type. The corresponding uninuclear and the binuclear promolecules
are shown in figure 7. After the nuclei are selected as shown by the formulas 49–
52, u∗ of the corresponding uninuclear promolecules 53–56 are constructed. On
the other hand, by selecting the binuclei as shown by the formulas 61–64, b∗ of
the corresponding binuclear promolecules 57–60 are constructed.

The discussion described for the case shown in figure 6 is also effective to
the case shown in figure 7. Because they represent a single balanced 3D-tree,
the contribution of the uninuclear promolecules (53–56) to the number of unbal-
anced 3D-trees should be zero, even though the contribution of the uninuclear
promolecules (53–56) to the coefficient Gk is one or more, i.e., u∗. This implies
that u∗−b∗ = 0 for balanced trees of meso-type. Instead, one can find easily that
only 59 is used to evaluate the number of balanced trees, although the coefficient
Ck is used to evaluate the number of the binuclear promolecules (57–60).

As found in the discussions described above for balanced 3D-trees, the
number (u∗) of inequivalent uninuclear promolecules is equal to the number
of inequivalent vertices and the number (b∗) of inequivalent binuclear promole-
cules is equal to the number of inequivalent edges. When balanced 3D-trees are
taken into consideration, the cleavage at the balance-edge results in two equal
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Figure 8. Uninuclear 3D-trees (65–69) and binuclear 3D-trees (79–82) as well as uninuclear promol-
ecules (70–74) and binuclear promolecules (75–78) for characterizing an unbalanced 3D-tree.

halves, one of which is a sub-3D-tree containing all of the inequivalent vertices
(the number u∗) and all of the inequivalent edges other than the balance-
edge (the number b∗ − 1). Hence, u∗ = (b∗ − 1) + 1. Thus, in any balanced
3D-tree, the number (u∗) of inequivalent vertices is equal to the number (b∗) of
inequivalent edges. This is rewritten with respect to the relationship between uni-
nuclear promolecules and binuclear promolecules relevant to a single balanced
3D-tree, giving the following theorem:

Theorem 2. As for any balanced 3D-tree, the number (u∗) of relevant uninucle-
ar promolecules is equal to the number (b∗) of relevant binuclear promolecules.
Hence, u∗ − b∗ = 0.
Theorem 2 is exemplified by figures 6 and 7.

2.4.2. Unbalanced 3D-trees
The 2-methylpentane as a 3D-tree (3) shown in figures 2 and 3 is an unbal-

anced 3D-tree, because it has no balance-edge. The number (u∗) of inequivalent
uninuclear promolecules and the number (b∗) of inequivalent binuclear promol-
ecules satisfy the relation u∗ − b∗ = 5 − 4 = 1, as shown in figure 3.

2,2,4-Timethylpentane shown in figure 8 is an unbalanced 3D-tree, because
it has no balance-edge. The number (u∗) of inequivalent uninuclear promolecules
and the number (b∗) of inequivalent binuclear promolecules satisfy the relation
u∗ − b∗ = 5 − 4 = 1.
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The examples shown in figures 3 and 8 can be generalized as follows. If a
given 3D-tree is an unbalanced one, a vertex selected from each orbit of vertices
and an edge selected from each orbit of edges construct a sub-3D-tree, which has
u∗ vertices and b∗ edges. Hence, u∗ = b∗ + 1. Thus, in any unbalanced 3D-tree,
the number (u∗) of inequivalent vertices is equal to one plus the number (b∗) of
inequivalent edges. This is rewritten to cover uninuclear and binuclear promole-
cules for an unbalanced 3D-tree as the following theorem:

Theorem 3. In any unbalanced 3D-tree, the number (u∗) of relevant uninuclear
promolecules relevant to it and the number (b∗) of relevant binuclear promole-
cules satisfy the relationship u∗ − b∗ = 1.

Let Uk be the number of unbalanced 3D-trees of carbon content k. The
corresponding counting series is represented as follows:

U (x) =
∞∑

k=1

Uk xk . (4)

Theorem 2 indicates that the contribution of the uninuclear promolecules
(e.g., 40–42) to the coefficient Uk should be zero per balanced 3D-tree, even
though the contribution of the uninuclear promolecules (e.g., 40–42) to the
coefficient Gk is one or more (i.e., u∗) per balanced 3D-tree. On the other hand,
theorem 3 indicates that the contribution of the uninuclear promolecules (e.g.,
17–21) to the coefficient Uk should be only unit per unbalanced 3D-tree, even
though the contribution of the uninuclear promolecules (17–21) to the coefficient
Gk is one or more (i.e., u∗) per unbalanced 3D-tree.

Theorems 2 and 3 indicates that the generating function (equation 4) is
represented by

U (x) = G(x) − C(x), (5)

which counts inequivalent unbalanced trees. The generating function G(x) (equa-
tion 2) counts uninuclear promolecules, while the generating function C(x)

(equation 3) counts binuclear promolecules, which are contained as contami-
nants in the former set of uninuclear promolecules.

Theorem 4. Let G(x) (equation 2) be a generating function for counting uninu-
clear promolecules. Let C(x) (equation 3) be a generating function for counting
binuclear promolecules. Then, the subtraction U (x) = G(x) − C(x) (equation
5) gives the numbers of inequivalent balanced 3D-trees as its coefficients, where
any one selected from each set of equivalent unbalanced 3D-trees is left to be
counted just once. Thus, the coefficients satisfy the relationship Uk = Gk − Ck
(k: non-negative integers).
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The expression “any one selected from each set of equivalent unbalanced
3D-trees is left to be counted just once” means that there is no criterion for
selecting a specified unbalanced 3D-tree. For example, any one of 12–16 in figure
3 gives a single unbalanced 3D-tree (3) if the symbol for a nucleus • is deleted.

If the number evaluated by G(x) contains irregularity due to contami-
nants of meso-type, the functional equation C(x) used in equation 5 (theorem 4)
should be corrected to give corrected values of U (x). Such corrections will be
discussed below in detail.

2.5. Cores for unbalanced 3D-trees

The second approach to discuss the congruence between such uninuclear
promolecules as relevant to a single 3D-tree is based on the methodology in
which the correspondence between the uninuclear promolecules and the relevant
binuclear ones is determined after the selection of a specified uninuclear promol-
ecule with a core.

2.5.1. Other modes of dichotomy
According to Jordan [30], there are two modes of dichotomy for classify-

ing trees. The dichotomy of central/bicentral trees is based on the presence of a
center or a bicenter, while the dichotomy of centroidal/bicentroidal trees is based
on the presence of a centroid or a bicentroid. The two proligands attaching to a
given balance-edge are congruent because of definition 1. This means that the
balance-edge is identical with the edge of a bicenter as well as with the edge of
a bicentroid.

Each unbalanced 3D-tree, whether it is central or bicentral (or centroidal
or bicentroidal), has a special vertex, which is different from the other vertices.
This means that each unbalanced 3D-tree can be treated as a central 3D-tree
(or a centroidal 3D-tree). Let us call the special vertex a core by the following
definition:

Definition 3. For any unbalanced tree, we can select a core for discussing its
congruence to other 3D-trees:

1. A center of a given tree if present can be selected as a core for discussing its
congruence to other 3D-trees. Similarly, a centroid of a given tree if present
can be a core for discussing its congruence to other 3D-trees.

2. If a given tree has a bicenter other than a balance-edge, either one of the
two terminal vertices of the bicenter can be selected as such a core as
described above, because they are not equivalent. Similarly, if a given tree
has a bicentroid other than a balance-edge, either one of the two terminal
vertices of the bicentroid can be selected as such a core as described above,
because they are not equivalent.
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Figure 9. A representative uninuclear 3D-tree 14 (or promolecule 19) as well as contaminants
(12, 13, 15, and 16), which are ascribed to binuclear promolecules (83–86).

To discuss the congruence of unbalanced 3D-trees, a center or either one vertex
of a bicenter is here selected as a core. It should be noted that essentially equiv-
alent discussions are available, if a centroid or either one vertex of a bicentroid
is selected as a core.

For example, the center of the 3D-tree (3) is a vertex shown by the symbol
• in the uninuclear 3D-tree (14). The center is selected as a core and the corre-
sponding uninuclear 3D-tree (14) is selected as a representative among the cor-
responding uninuclear 3D-trees (12–16) shown in figure 3.

The promolecule (19) corresponding to 14 is considered as a representative
of the uninuclear promolecules (17–21), as shown in figure 9. This means that
the promolecule (19) is counted just once and the other promolecules (17, 18,
20, and 21) should be left out of our calculations as contaminants. For this pur-
pose, the contaminant promolecules (17, 18, 20, and 21) are rewritten as binu-
clear promolecule 83–86, as shown in figure 9.

The binuclear promolecule (83) corresponding to the contaminant uninu-
clear promolecule (17) is recognized to contain a proligand p and another
proligand X1, where the former proligand p retains the core selected for the rep-
resentative (14 or 19). Once the representative (14 or 19) is selected, the proli-
gand p is regarded as being fixed. On the same line, the binuclear promolecules
84–86 contain proligands which are considered to be fixed, i.e., X2 for 84, X5 for
85, and X6 for 86, as shown in figure 9.

The procedure described above results in the one-to-one correspondence
between the uninuclear promolecules and the binuclear promolecules shown in
figure 9, i.e., 12/83, 13/84, 15/85, and 16/86.

In general, once a representative (as a uninuclear promolecule) having a
core vertex (e.g., a center) is selected for any unbalanced 3D-tree, the remain-
ing contaminant 3D-trees (as uninuclear promolecules) are regarded as binucle-
ar promolecules, where one proligand of each binuclear promolecule contains the
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core of the representative selected. Moreover the proligand containing the core is
considered to be fixed after the selection of the representative.

Combinatorial enumeration of uninuclear promolecules contains the same
process as that of binuclear promolecules, if one proligand is fixed.

Theorem 5. Suppose that one proligand of a given 3D-tree is fixed. Consider
the set of uninuclear promolecules which are generated by using all of planted
3D-trees as the other proligands as well as the set of binuclear promolecules
which are generated by using all of planted 3D-trees as the other proligand. The
two sets are identical under the condition that the first selected proligand is fixed.

This point has been discussed in terms of the relationship between proligands
and ligands [16–18].

2.5.2. Deletion of contaminants
Theorem 5 indicates that the deletion of the contaminants (12, 13, 15, and

16 or equivalently 17, 18, 20, and 21) can be replaced by the deletion of the
binuclear promolecules (83–86). Thereby, there remains the representative 14 or
19. It follows that the generating function U (x) = G(x) − C(x) can be used
to evaluate the number of such representatives (i.e., the number of inequiva-
lent unbalanced 3D-trees). Note that the generating function G(x) (equation 2)
counts uninuclear promolecules, while the generating function C(x) (equation 3)
counts binuclear promolecules as contaminants. This conclusion is the same as
equation 5.

Next, we shall examine balanced trees. For example, figure 6 shows the rela-
tionship between the balance-edge of the balanced 3D-tree (32) and the nucleus
(•) of each uninuclear 3D-trees 37–39 (or equivalently each uninuclear promole-
cule 40–42).

The binuclear 3D-tree 46 (or equivalently the binuclear promolecule 43)
which corresponds to the uninuclear 3D-tree 37 (or equivalently the uninucle-
ar promolecule 40) is rewritten as 87, which contain proligands p and X1 (fig-
ure 10). Because the proligand p involves the balance-edge, the p is considered
to be fixed. On the same line, the proligand X2 contained in 88 is considered to
be fixed.

According to theorem 5, the counting as uninuclear 3D-trees (e.g., 37 and
38) gives the same results as the counting as binuclear 3D-trees (e.g., 87 and 88).

On the other hand, the nucleus (•) of the uninuclear 3D-tree 39 (or equiva-
lently each uninuclear promolecule 42) produces no proligand containing the bal-
anced edge. As shown in the rewritten promolecule 89, the proligand X4 does
not contain the balance-edge but contains the either terminal vertex of the bal-
ance-edge. Even in this case, the counting as uninuclear 3D-trees (e.g., 39) gives
the same results as the counting as binuclear 3D-trees (e.g., 89) according to
theorem 5.
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Figure 10. Uninuclear 3D-trees 37–39 for a balanced tree. They are ascribed to binuclear
promolecules (87–89).

It follows that the generating function G(x) − C(x) for balanced 3D-trees
vanishes so as to exhibit no contribution to the number of inequivalent unbal-
anced 3D-trees. This conclusion is the same as equation 5, which also shows no
contribution of balanced 3D-trees.

The discussions described in this subsection provide us with an alternative
proof of equation 5. For the sake of further discussions, the conclusion of the
second proof is summarized as a theorem:

Theorem 6. Let G(x) (equation 2) be a generating function for counting uninu-
clear promolecules. Let C(x) (equation 3) be a generating function for count-
ing binuclear promolecules. Then, the subtraction U (x)=G(x) − C(x) (equation
5) gives the numbers of inequivalent balanced 3D-trees as its coefficients, where
each of the inequivalent unbalanced 3D-trees is characterized by a core. Thus,
the coefficients satisfy the relationship Uk = Gk − Ck (k: non-negative integers).

Compare theorem 6 with theorem 4. The expression “each of the inequivalent
unbalanced 3D-trees is characterized by a core” means that the selected core is
a criterion for selecting a specified unbalanced 3D-tree. For example, 14 selected
among 12–16 (figure 3) gives a single unbalanced 3D-tree (3), where the core •
is specified so as to leave 14 (or 19).

If the number evaluated by G(x) contains irregularity due to contami-
nants of meso-type, the functional equation C(x) used in equation 5 (theo-
rem 6) should be corrected to give corrected values of U (x) on the same line as
theorem 4.
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3. Combinatorial enumeration of 3D-trees

3.1. Ligand inventories of three kinds

According to Fujita’s proligand method [16–18], promolecules as stereoi-
somers can be counted by placing proligands on a given skeleton, where the
modes of substitution are controlled by three kinds of sphericities of cycles. The
sphericity of each cycle determines the chirality fittingness for accommodating
achiral and/or chiral proligands, which is represented by a generating function. A
homospheric d-cycle is characterized by a sphericity index ad , which is replaced
by a(xd) to generate a ligand inventory. The resulting ligand inventory a(x)

is a generating function for enumerating achiral proligands. An enantiospheric
d-cycle is characterized by a sphericity index cd , which is replaced by c(xd) to
generate a ligand inventory. The resulting ligand inventory c(x) is a generating
function for enumerating ordered enantiomeric pairs called “diploids”, where we
use c(x2) because d is even. A hemispheric d-cycle is characterized by a sphe-
ricity index bd , which is replaced by b(xd) to generate a ligand inventory. The
resulting ligand inventory b(x) is a generating function for enumerating achiral
proligands and chiral proligands, where two enantiomers of each pair counted
separately. Hence, we presume the following generating functions:

a(x) =
∞∑

k=0

αk xk, (6)

c(x2) =
∞∑

k=0

γ2k x2k, (7)

b(x) =
∞∑

k=0

βk xk, (8)

where we place α0 = 1, γ0 = 1, β0 = 1 for the trivial cases; and αk , γk , and βk
represent the numbers of proligands at issue.

For the purpose of enumerating 3D-trees of degree 4 (or alkanes), planted
3D-trees enumerated under the point group C3v are used as proligands on the
basis of Fujita’s proligand method [16–18]. Thereby, the following functional
equations for evaluating αk , γk , and βk obtained:

a(x) = 1 + xa(x)c(x2), (9)

c(x2) = 1 + x2

3

(
c(x2)3 + 2c(x6)

)
, (10)

b(x) = 1 + x

3

(
b(x)3 + 2b(x3)

)
, (11)
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although the derivation of these equations for enumerating such proligands
(planted 3D-trees) will be mentioned elsewhere. The values of αk , γk , and βk are
recursively calculated by using equations 9–11. In order to enumerate 3D-trees,
the results up to carbon content 20 are shown as the following ligand-counting
series:

a(x) = 1 + x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 14x7 + 23x8

+ 41x9 + 69x10 + 122x11 + 208x12 + 370x13

+ 636x14 + 1134x15 + 1963x16 + 3505x17

+ 6099x18 + 10908x19 + 19059x20 + · · · , (12)

c(x2) = 1 + x2 + x4 + 2x6 + 5x8 + 11x10 + 28x12

+ 74x14 + 199x16 + 551x18 + 1553x20 + 4436x22 + 12832x24

+ 37496x26 + 110500x28 + 328092x30 + 980491x32 + 2946889x34

+ 8901891x36 + 27012286x38 + 82300275x40 + · · · , (13)

b(x) = 1 + x + x2 + 2x3 + 5x4 + 11x5 + 28x6 + 74x7

+ 199x8 + 551x9 + 1553x10 + 4436x11 + 12832x12

+ 37496x13 + 110500x14 + 328092x15 + 980491x16

+ 2946889x17 + 8901891x18 + 27012286x19 + 82300275x20 + · · ·, (14)

where each coefficient gives the value αk , γk , or βk for the generating function
shown in equations. 6–8. It should be noted that the coefficient αk of equation
12 indicates the number of achiral mono-substituted alkanes of carbon content
k; that the coefficient γk of equation 13 indicates the number of achiral mono-
substituted alkanes plus enantiomeric pairs of chiral mono-substituted alkanes
both of carbon content k (i.e., so-called “diploids”); that the coefficient βk of
equation 14 indicates the number of achiral and chiral mono-substituted alkanes
of carbon content k, which are counted separately. The numbers of such mono-
substituted alkanes as enumerated in terms of the sphericities of three categories
can be regarded as the numbers of alkyl ligands, which are necessary to enumer-
ate alkanes as stereoisomers. At the same time, they can be regarded as the num-
bers of planted 3D-trees, which are necessary to enumerate 3D-trees.

3.2. Enumeration of unbalanced 3D-trees

In the preceding discussion on G(x), C(x), and U (x), the automorphism
groups for uninuclear and binuclear promolecules are not specified. Here, com-
binatorial enumerations are conducted under the four conditions, which are
denoted by the following superscripts. The automorphism groups are determined
according to these conditions.

1. The symbol (AC) is concerned with the number of inequivalent 3D-trees,
where achiral ones (A) plus enantiomeric pairs (C) of chiral ones are
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counted. Note that each enantiomeric pair is counted just once, though the
pair is composed of two enantiomers. As for a tetrahedral skeleton for enu-
merating uninuclear promolecules, the Td group is used as the automor-
phism group. The D∞h or its factor group D∞h/C∞ is used to evaluate the
number of binuclear promolecules.

2. The symbol (AC2) is concerned with the number of inequivalent 3D-trees
which are achiral (A) and chiral (C2), where the two chiral 3D-trees of each
enantiomeric pair are counted separately. For this purpose, the T group and
the D∞ (or its factor group D∞/C∞) are used.

3. The symbol (A) is concerned with the number of inequivalent 3D-trees
which are achiral (A). For this purpose, the improper rotations of the Td
group and those of the D∞h (or its factor group D∞h/C∞) are used.

4. The symbol (C) is concerned with the number of inequivalent 3D-trees
which are chiral (C). For this purpose, the Td group and the D∞h (or its
factor group D∞h/C∞) are used after modification.

3.2.1. Binuclear 3D-trees as contaminants
The first task is to evaluate the number of binuclear promolecules or

3D-trees for C(x) (equation 5). As found in the preceding discussions, binu-
clear promolecules represent contaminants for enumerating unbalanced 3D-trees
(cf. theorem 6) as well as balanced trees. Such binuclear promolecules contain a
two-nodal skeleton (31) of D∞h-symmetry. In order to avoid the infinite nature
of the D∞h-point group, we use the corresponding factor group of order 4:

K = D∞h/C∞ = {C∞ I, C∞C2, C∞σv, C∞σh} (15)

and its subgroups:

K1 = C∞/C∞ = {C∞ I }, (16)

K2 = D∞/C∞ = {C∞ I, C∞C2}, (17)

K3 = C∞v/C∞ = {C∞ I, C∞σv}, (18)

K4 = C∞h/C∞ = {C∞ I, C∞σh}, (19)

K5 = K = D∞h/C∞, (20)

according to the treatment reported previously [21]. Thereby, the two
positions of the skeleton, which are governed by the right coset representation
(C∞v\)D∞h , are in turn considered to be governed by the right coset represen-
tation of the factor group, i.e., (K3\)K. In particular, the factor group K is iso-
morphic to the point group C2v = {I, C2, σv(1), σv(2)}, while the subgroup K3 is
isomorphic to the point group Cs = {I, σv(1)}, where we place σv(1) = σv and
σv(2) = σh . Geometrically speaking, the infinite number of dihedral C2-axes of
the two-nodal skeleton is reduced into a single C2-axis; the infinite number of
mirror planes σv is reduced into a single σv(1); and the horizontal mirror plane
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σh is changed into a single σv(2). This means that the sphericity indices for the
RCR (C∞v\)D∞h having infinite symmetry operations can be discussed through
the RCR (K3\)K having finite operations on the analogy of the RCR (Cs\)C2v.

When we sequentially number the two substitution positions of the two-
nodal skeleton for the binuclear 3D-trees, we can obtain the following right coset
representation:

(K3\)K = {(1)(2), (1 2), (1)(2), (1 2)}, (21)

which permutes the two positions, where each overbar represents the alternation
of the chirality of a proligand occupying the position. The products of spheric-
ity indices b2

1 and b2 are assigned to the cycles (1)(2) and (1)(2), while a2
1 and c2

are assigned to (1)(2) and (1 2). Following theorem 1 of [18], the CI-CF for this
case is obtained as follows:

CI-CF(K; $d) = 1
4

(
b2

1 + b2 + a2
1 + c2

)
, (22)

where the symbol $d represents a sphericity index, ad , cd , or bd , according to the
respective sphericity. An equation equivalent to equation 22 has been reported
previously on the basis of Fujita’s USCI approach [21].

Let C (AC)

k be the number of binuclear 3D-trees of carbon content k, which
are achiral ones plus enantiomeric pairs of chiral ones. They are enumerated by
using the automorphism group K(= D∞h/C∞).

C(x)(AC) =
∞∑

k=1

C (AC)

k xk . (23)

The sphericity indices, ad , cd , and bd , are replaced by a(xd) − 1, c(xd) − 1, and
b(xd) − 1, respectively. Note that the coefficient of the term x0(=1) in equation
12, 13, or 14 is unnecessary to the use for binuclear promolecules. Thereby, equa-
tion 22 is converted into the corresponding counting series as follows:

C(x)(AC) = 1
4

{
(b(x) − 1)2 + (b(x2) − 1) + (a(x) − 1)2 + (c(x2) − 1)

}
. (24)

The ligand inventories shown in equations 12–14 are introduced into
equation 24 and the resulting equation is expanded to give the following
generating function:

C(x)(AC) = x2 + x3 + 3x4 + 6x5 + 15x6 + 34x7 + 89x8 + 226x9 + 619x10

+ 1709x11 + 4882x12 + 14104x13 + 41463x14 + 122930x15

+ 367966x16 + 1108199x17 + 3357386x18 + 10217632x19

+ 31225699x20 + · · · , (25)
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where the coefficient C (AC)

k of the term xk represents the number of inequivalent
binuclear promolecules, which are recognized as contaminants.

Theorem 3 of Ref. 18 for the enumeration of ligands under the action of the
maximum chiral subgroup can be applied to this case so as to derive the follow-
ing CI-CF:

CI-CF(K2; bd) = 1
2

(
b2

1 + b2

)
, (26)

which counts achiral promolecules and chiral promolecules, where two enantio-
mers of each pair are counted separately.

Let Ĉ (AC2)

k be the uncorrected number of binuclear 3D-trees of carbon con-
tent k, which are achiral and chiral.

Ĉ(x)(AC2) =
∞∑

k=1

Ĉ (AC2)

k xk . (27)

By replacing bd by b(xd) − 1, equation 26 is converted into the corresponding
functional equation as follows:

Ĉ(x)(AC2) = 1
2

{
(b(x) − 1)2 + (b(x2) − 1)

}
. (28)

The ligand inventories shown in equations 12–14 are introduced into equation 28
and the resulting equation is expanded to give the following generating function:

Ĉ(x)(AC2) = x2 + x3 + 3x4 + 7x5 + 19x6 + 49x7 + 139x8 + 384x9 + 1104x10

+ 3180x11 + 9306x12 + 27390x13 + 81373x14 + 243077x15

+ 730698x16 + 2206994x17 + 6697203x18 + 20403645x19

+ 62392611x20 + · · · . (29)

The first proposition of theorem 4 for the enumeration of achiral ligands
[18] can be applied to this case so as to derive the following CI-CFA:

CI-CFA(K, $d) = 2CI-CF(K, $d) − CI-CF(K2, bd)

= 1
2

(
a2

1 + c2

)
, (30)

which counts achiral promolecules only, where each pair of enantiomers is
counted just once.

Let Ĉ (A)

k be the uncorrected number of binuclear 3D-trees of carbon content
k, which are achiral.

Ĉ(x)(A) =
∞∑

k=1

Ĉ (A)

k xk . (31)
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By replacing ad , cd , and bd by a(xd) − 1, c(xd) − 1, and b(xd) − 1, respectively,
equation 30 is converted into the corresponding functional equation as follows:

Ĉ(x)(A) = 1
2

{
(a(x) − 1)2 + (c(x2) − 1)

}
. (32)

The ligand inventories shown in equations 12–14 are introduced into equa-
tion 32 and the resulting equation is expanded to give the following generating
function:

Ĉ(x)(A) = x2 + x3 + 3x4 + 5x5 + 11x6 + 19x7 + 39x8 + 68x9 + 134x10

+ 238x11 + 458x12 + 818x13 + 1553x14 + 2783x15 + 5234x16

+ 9404x17 + 17569x18 + 31619x19 + 58787x20 + · · · . (33)

It should be noted that the enumeration results shown in equation 33 con-
tain the participation of balanced binuclear 3D-trees of meso-type (e.g., pp),
which are unnecessary to be counted as contaminants. However, this unnecessary
participation is deleted by adding the number of balanced binuclear 3D-trees, as
described later.

In order to avoid the unnecessary participation of the meso-type, the term
c2 for treating meso-type in equation 30 is replaced by the term a2. Thereby, we
obtain the following equation:

1
2

(
a2

1 + a2

)
. (34)

Let C (A)

k be the (corrected) number of inequivalent binuclear 3D-trees of
carbon content k, which are achiral but not meso-type.

C(x)(A) =
∞∑

k=1

C (A)

k xk . (35)

By replacing ad by a(xd) − 1, equation 34 is converted into the corresponding
functional equation as follows:

C(x)(A) = 1
2

{
(a(x) − 1)2 + (a(x2) − 1)

}
. (36)

The ligand inventories shown in equations 12–14 are introduced into equa-
tion 36. The resulting equation is expanded to give the following generating
function:

C(x)(A) = x2 + x3 + 3x4 + 5x5 + 11x6 + 19x7 + 38x8 + 68x9 + 131x10

+ 238x11 + 448x12 + 818x13 + 1523x14 + 2783x15 + 5146x16

+ 9404x17 + 17314x18 + 31619x19 + 58045x20 + · · · . (37)



164 S. Fujita / Combinatorial enumeration of three-dimensional trees as stereochemical models

The second proposition of theorem 4 for the enumeration of chiral ligands
[18] can be applied to obtain the following CI-CFC :

CI-CFC(K, $d) = CI-CF(K2, bd) − CI-CF(K, $d)

= 1
4

(
b2

1 + b2 − a2
1 − c2

)
, (38)

which counts chiral promolecules only. As found easily, equation 38 is obtained
by subtracting equation 30 from equation 22.

Let Ĉ (C)

k be the uncorrected number of binuclear 3D-trees of carbon content
k, which are enantiomeric pairs of chiral ones.

Ĉ(x)(C) =
∞∑

k=1

Ĉ (C)

k xk . (39)

By replacing ad , cd , and bd by a(xd) − 1, c(xd) − 1, and b(xd) − 1, respectively,
equation 38 is converted into the corresponding functional equation as follows:

Ĉ(x)(C) = 1
4

{
(b(x) − 1)2 + (b(x2) − 1) − (a(x) − 1)2 − (c(x2) − 1)

}
. (40)

The ligand inventories shown in equations 12–14 are introduced into equa-
tion 40 and the resulting equation is expanded to give the following generating
function:

Ĉ(x)(C) = x5 + 4x6 + 15x7 + 50x8 + 158x9 + 485x10

+ 1471x11 + 4424x12 + 13286x13 + 39910x14 + 120147x15 + 362732x16

+ 1098795x17 + 3339817x18 + 10186013x19 + 31166912x20 + · · · . (41)

On the same line as equation 38 is obtained by subtracting equations 30
from 22, the subtraction of equations 34 from 22 gives the following equation:

1
4

(
b2

1 + b2 − a2
1 + c2 − 2a2

)
, (42)

which is related to equation 34 without the participation of meso-type.
Let C (C)

k be the (corrected) number of binuclear 3D-trees of carbon content
k, which are enantiomeric pairs of chiral ones.

C(x)(C) =
∞∑

k=1

C (C)

k xk, (43)
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where the participation of meso-type is avoided according to equation 34. By
replacing ad , cd , and bd by a(xd)−1, c(xd)−1, and b(xd)−1, respectively, equa-
tion 42 is converted into the corresponding functional equation as follows:

C(x)(C) = 1
4

{
(b(x) − 1)2 + (b(x2) − 1) − (a(x) − 1)2

+ (c(x2) − 1) − 2(a(x2) − 1)
}

. (44)

The ligand inventories shown in equations 12–14 are introduced into equation 44
and the resulting equation is expanded to give the following generating function:

C(x)(C) = x5 + 4x6 + 15x7 + 51x8 + 158x9 + 488x10

+ 1471x11 + 4434x12 + 13286x13 + 39940x14 + 120147x15 + 362820x16

+ 1098795x17 + 3340072x18 + 10186013x19 + 31167654x20 + · · · . (45)

To introduce the correction by equation 42 into the evaluation by Ĉ(x)(AC2),
we sum up equations 22 and 42 as follows:

1
4

(
b2

1 + b2 + a2
1 + c2

)
+ 1

4

(
b2

1 + b2 − a2
1 + c2 − 2a2

)

= 1
2

(
b2

1 + b2

)
+ 1

2
(c2 − a2) . (46)

Let C (AC2)

k be the (corrected) number of binuclear 3D-trees of carbon content k,
which are achiral and chiral:

C(x)(AC2) =
∞∑

k=1

C (AC2)

k xk . (47)

By replacing ad , cd , and bd by a(xd) − 1, c(xd) − 1, and b(xd) − 1, respectively,
equation 46 is converted into the corresponding functional equation as follows:

C(x)(AC2) = 1
2

{
(b(x) − 1)2 + (b(x2) − 1)

}
+ 1

2

{
(c(x2) − 1) − (a(x2) − 1)

}
. (48)

Compare this equation with equation 28. The terms within the last pair of
braces in equation 48 indicate the correction at issue.

The ligand inventories shown in equations 12–14 are introduced into equa-
tion 48 and the resulting equation is expanded to give the following generating
function:

C(x)(AC2) = x2 + x3 + 3x4 + 7x5 + 19x6 + 49x7 + 140x8 + 384x9 + 1107x10

+ 3180x11 + 9316x12 + 27390x13 + 81403x14 + 243077x15

+ 730786x16 + 2206994x17 + 6697458x18

+ 20403645x19 + 62393353x20 + · · · (49)
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The corrected and uncorrected equations for evaluating contaminants satisfy
the following equations:

C(x)(AC) = C(x)(A) + C(x)(C), (50)

C(x)(AC) = Ĉ(x)(A) + Ĉ(x)(C), (51)

C(x)(AC2) = C(x)(AC) + C(x)(C), (52)

Ĉ(x)(AC2) = C(x)(AC) + Ĉ(x)(C). (53)

Thus, equation 50 is derived from equations 24, 36, and 44 or alternatively
from equations 25, 37, and 45; and equation 51 is derived from equations 24, 32,
and 40 or alternatively from equations 25, 33, and 41. In addition, equation 52
is derived from equations 48, 24, and 44 or alternatively from equations 49, 25,
and 45; and equation 53 is derived from equations 28, 24, and 40 or alternatively
from equations 29, 25, and 41.

3.2.2. Uninuclear 3D-trees for evaluating gross numbers
The next task is to evaluate the number of uninuclear 3D-trees for G(x)

(equation 5). The uninuclear skeleton (30) belongs to Td -symmetry so that
the four substitution positions are governed by the right coset representation
(RCR) (C3v\)Td according to the USCI approach [23] and the proligand method
[16–18]. By applying theorem 1 of Ref. 18 to this case, the CI-CF is calculated
as follows:

CI-CF(Td , $d) = 1
24

(b4
1 + 3b2

2 + 8b1b3 + 6a2
1c2 + 6c4), (54)

which counts achiral promolecules and enantiomeric pairs of chiral promole-
cules. Note that each pair of enantiomers is counted just once in this enumer-
ation.

Let G (AC)

k be the number of achiral uninuclear promolecules plus enantio-
meric pairs of chiral uninuclear promolecules of carbon content k. Then, a gen-
erating function for enumerating them can be written as follows:

G(x)(AC) =
∞∑

k=1

G (AC)

k xk . (55)

By replacing ad , cd , and bd by a(xd), c(xd), and b(xd), respectively, equation 54
is converted into the corresponding counting series as follows:

G(x)(AC) = x

24

(
b(x)4 + 3b(x2)2 + 8b(x)b(x3) + 6a(x)2c(x2) + 6c(x4)

)
. (56)

where the multiplication by x is necessary because equation 54 for CI-CF(Td , $d)

ignores the nucleus of the parent promolecule tentatively (cf. 30). Note that the
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term for a null vertex (i.e., x0 = 1) should be taken into consideration in the
derivation of equation 56.

The ligand inventories shown in equations 12–14 are introduced into equa-
tion 56 and the resulting equation is expanded to give the following generating
function:

G(x)(AC) = x +x2 +2x3+4x4 +9x5+18x6+43x7+103x8+264x9+696x10

+1912x11+5363x12 +15403x13+44848x14 +132277x15+393657x16

+1180704x17+3562712x18+10807244x19+32927721x20+··· . (57)

Theorem 3 of Ref. 18 for the enumeration of ligands under the action of
the maximum chiral subgroup can be applied to the derivation of the CI-CF for
enumeration based on the T:

CI-CF(T, bd) = 1
12

(
b4

1 + 3b2
2 + 8b1b3

)
, (58)

which counts achiral promolecules and chiral promolecules, where two enantio-
mers of each pair are counted separately.

Let G (AC2)

k be the number of achiral promolecules plus chiral promolecules
of carbon content k, where two enantiomers of each pair are counted separately.
Then, a generating function for enumerating them is obtained as follows:

G(x)(AC2) =
∞∑

k=0

G (AC2)

k xk . (59)

Because equation 58 for CI-CF(T, bd) ignores the core of the parent promolecule
tentatively (cf., 30), the following functional equation is obtained by multiplying
by x :

G(x)(AC2) = x

12

(
b(x)4 + 3b(x2)2 + 8b(x)b(x3)

)
, (60)

after replacing bd of equation 58 by b(xd). The ligand inventory shown in equa-
tion 14 is introduced into equation 60 so as to obtain the target number as the
coefficient G (AC2)

k of the term xk of equation 61:

G(x)(AC2) = x + x2 + 2x3 + 4x4 + 10x5 + 22x6 + 60x7 + 158x8 + 439x9 + 1229x10

+ 3525x11 + 10178x12 + 29802x13 + 87862x14 + 261204x15

+ 781198x16 + 2350249x17 + 7105081x18

+ 21577415x19 + 65787902x20 + · · · (61)
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The first proposition of theorem 4 for the enumeration of achiral ligands
[18] can be applied to the present case so as to derive the following CI-CFA:

CI-CFA(Td , $d) = 2CI-CF(Td , $d) − CI-CF(T, bd)

= 1
2
(a2

1c2 + c4), (62)

which counts achiral promolecules only.
Let G (A)

k be the number of achiral promolecules of carbon content k, which
appears as each coefficient of the following generating function:

G(x)(A) =
∞∑

k=0

G (A)

k xk . (63)

By replacing ad , cd , and bd by a(xd), c(xd), and b(xd), respectively, equation 54
is converted into the corresponding functional equation as follows:

G(x)(A) = x

2

(
a(x)2c(x2) + c(x4)

)
. (64)

Because equation 63 for CI-CFA(Td , $d) ignores the nucleus of the parent pro-
molecule tentatively (cf. 30), the functional equation (equation 64) is obtained by
multiplying by x . The ligand inventories shown in equations 12 and 13 are intro-
duced into equation 64 so as to obtain the target number as the coefficient G (A)

k
of the term xk of equation 65:

G(x)(A) = x + x2 + 2x3 + 4x4 + 8x5 + 14x6 + 26x7 + 48x8 + 89x9 + 163x10

+ 299x11 + 548x12 + 1004x13 + 1834x14 + 3350x15 + 6116x16

+ 11159x17 + 20343x18 + 37073x19 + 67540x20 + · · · . (65)

The second proposition of theorem 4 for the enumeration of chiral ligands
[18] can be applied to obtain the following CI-CFC :

CI-CFC(Td , $d)

= CI-CF(T, bd) − CI-CF(Td , $d)

= 1
24

(
b4

1 + 3b2
2 + 8b1b3 − 6a2

1c2 − 6c4

)
, (66)

which counts chiral promolecules only, where each pair of enantiomers is
counted just once.

Let G (C)

k be the number of chiral centroidal promolecules, where each pair
of two enantiomers is counted just once. The corresponding generating function
for enumerating them is represented as follows:

G(x)(C) =
∞∑

k=0

G (C)

k xk . (67)
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By replacing ad , cd , and bd by a(xd), c(xd), and b(xd), respectively, after
multiplying by x , equation 66 is converted into the corresponding counting series
as follows:

G(x)(C) = x

24

(
b(x)4 + 3b(x2)2 + 8b(x)b(x3) − 6a(x)2c(x2) − 6c(x4)

)
. (68)

The same ligand inventories shown in equations 12–14 are introduced into equa-
tion 68 so as to obtain the target number as the coefficient G (C)

k of the term xk

of equation 69:

G(x)(C) = x5 + 4x6 + 17x7 + 55x8 + 175x9 + 533x10

+ 1613x11 + 4815x12 + 14399x13 + 43014x14 + 128927x15 + 387541x16

+ 1169545x17 + 3542369x18 + 10770171x19 + 32860181x20 + · · · (69)

3.2.3. Unbalanced 3D-trees
Let U (AC)

k be the number of inequivalent achiral unbalanced promolecules
(or 3D-trees) plus inequivalent enantiomeric pairs of chiral unbalanced promol-
ecules (or 3D-trees) of carbon content k. Then, a generating function for enu-
merating them can be written as follows:

U (x)(AC) =
∞∑

k=1

U (AC)

k xk . (70)

The generating function is obtained by applying equation 5 to this case, i.e.,

U (x)(AC) = G(x)(AC) − C(x)(AC). (71)

Thus, from equations 24 and equation 56, we obtain the following functional
equation:

U (x)(AC) = x

24

{
b(x)4 + 3b(x2)2 + 8b(x)b(x3) + 6a(x)2c(x2) + 6c(x4)

}

− 1
4

{
(b(x) − 1)2 + (b(x2) − 1) + (a(x) − 1)2 + (c(x2) − 1)

}
, (72)

The ligand inventories shown in equations 12–14 are introduced into equation
72. The resulting equation is expanded to give a generating function, in which
the coefficient of the term xk is the value of U (AC)

k . The values up to carbon con-
tent 20 are shown in the corresponding column of table 1.

Let Û (AC2)

k be the uncorrected number of inequivalent achiral unbalanced
promolecules (or 3D-trees) plus inequivalent chiral unbalanced promolecules (or
3D-trees) of carbon content k, where two enantiomers of each pair are counted
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Table 1
The numbers of unbalanced 3D-trees or alkanesa .

k U (AC)

k U (AC2)

k U (A)

k U (C)

k

1 1 1 1 0
2 0 0 0 0
3 1 1 1 0
4 1 1 1 0
5 3 3 3 0
6 3 3 3 0
7 9 11 7 2
8 14 18 10 4
9 38 55 21 17

10 77 122 32 45
11 203 345 61 142
12 481 862 100 381
13 1,299 2,412 186 1,113
14 3,385 6,459 311 3,074
15 9,347 18,127 567 8,780
16 25,691 50,412 970 24,721
17 72,505 143,255 1,755 70,750
18 205,326 407,623 3,029 202,297
19 589,612 1,173,770 5,454 584,158
20 1,702,022 3,394,549 9,495 1,692,527

aThe numbers of unbalanced 3D-trees are obtained under several conditions, i.e., U (AC)

k : achiral

and chiral unbalanced 3D-trees, where a pair of enantiomers is counted just once, U (AC2)

k : achiral
and chiral unbalanced 3D-trees, where two enantiomers of each pair are counted separately; U (A)

k :

achiral unbalanced 3D-trees, and U (C)

k : chiral unbalanced 3D-trees, where each pair of enantiomers
is counted just once.

separately. Then, a generating function for enumerating them can be written as
follows:

Û (x)(AC2) =
∞∑

k=1

Û (AC2)

k xk . (73)

The generating function is obtained by applying equation 5 to this case, i.e.,

Û (x)(AC2) = G(x)(AC2) − Ĉ(x)(AC2). (74)

By introducing equations 28 and 60 into this equation, we obtain the following
functional equation:

Û (x)(AC2) = x

12

{
b(x)4 + 3b(x2)2 + 8b(x)b(x3)

}

− 1
2

{
(b(x) − 1)2 + (b(x2) − 1)

}
. (75)
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After the ligand inventories shown in equations 12–14 are introduced into
equation 75, the resulting equation is expanded to give a generating function:

Û (x)(AC2) = x + x3 + x4 + 3x5 + 3x6 + 11x7 + 19x8 + 55x9 + 125x10

+ 345x11 + 872x12 + 2412x13 + 6489x14 + 18127x15 + 50500x16

+ 143255x17 + 407878x18 + 1173770x19 + 3395291x20 + · · · . (76)

Let U (AC2)

k be the (corrected) number of inequivalent achiral unbalanced
promolecules (or 3D-trees) plus inequivalent chiral unbalanced promolecules (or
3D-trees) of carbon content k, where two enantiomers of each pair are counted
separately. Then, a generating function for enumerating them can be written as
follows:

U (x)(AC2) =
∞∑

k=1

U (AC2)

k xk . (77)

The generating function is obtained by applying equation 5 to this case, i.e.,

U (x)(AC2) = G(x)(AC2) − C(x)(AC2) (78)

into which equations 48 and 60 are introduced so as to give the following func-
tional equation:

U (x)(AC2) = x

12

{
b(x)4 + 3b(x2)2 + 8b(x)b(x3)

}

− 1
2

{
(b(x) − 1)2 + (b(x2) − 1)

}
− 1

2

{
(c(x2) − 1) − (a(x2) − 1)

}
.

(79)

After the ligand inventories shown in equations 12–14 are introduced into equa-
tion 79, the resulting equation is expanded to give a generating function. The
coefficient of the term xk is the value of U (AC)

k , which are shown up to carbon
content 20 in the corresponding column of table 1.

Let Û (A)

k be the uncorrected number of inequivalent achiral unbalanced
promolecules of carbon content k, which appears as each coefficient of the
following generating function:

Û (x)(A) =
∞∑

k=0

Û (A)

k xk . (80)

The generating function is obtained by applying equation 5 to this case, i.e.,

Û (x)(A) = G(x)(A) − Ĉ(x)(AC). (81)
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This equation is converted into the following functional equation by using
equations 32 and 64, i.e.,

Û (x)(A) = x

2

{
a(x)2c(x2) + c(x4)

} − 1
2

{
(a(x) − 1)2 + (c(x2) − 1)

}
. (82)

The ligand inventories shown in equations 12–14 are introduced into equation 82
and the resulting equation is expanded to give the following generating function:

Û (x)(A) = x + x3 + x4 + 3x5 + 3x6 + 7x7 + 9x8 + 21x9 + 29x10

+ 61x11 + 90x12 + 186x13 + 281x14 + 567x15 + 882x16

+ 1755x17 + 2774x18 + 5454x19 + 8753x20 + · · · (83)

Let U (A)

k be the (corrected) number of inequivalent achiral unbalanced pro-
molecules of carbon content k, which appears as each coefficient of the following
generating function:

U (x)(A) =
∞∑

k=0

U (A)

k xk . (84)

The generating function is obtained by applying equation 5 to this case, i.e.,

U (x)(A) = G(x)(A) − C(x)(A). (85)

By considering equations 36 and 64, we obtain the following functional equa-
tion:

U (x)(A) = x

2

{
a(x)2c(x2) + c(x4)

} − 1
2

{
(a(x) − 1)2 + (a(x2) − 1)

}
. (86)

The ligand inventories shown in equations 12–14 are introduced into equation
86. After the expansion of the resulting equation, the coefficient U (A)

k of each
term xk is collected up to carbon content 20 in the corresponding column of
table 1.

Let Û (C)

k be the uncorrected number of inequivalent chiral unbalanced pro-
molecules (or 3D-trees), where each pair of two enantiomers is counted just
once. The corresponding generating function for enumerating them is represented
as follows:

Û (x)(C) =
n∑

k=0

Û (C)

k xk . (87)

The generating function is obtained by applying equation 5 to this case, i.e.,

Û (x)(C) = G(x)(C) − Ĉ(x)(C). (88)
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By starting from equations 40 and 68, we obtain the following functional
equation:

Û (x)(C) = x

24

{
b(x)4 + 3b(x2)2 + 8b(x)b(x3) − 6a(x)2c(x2) − 6c(x4)

}

− 1
4

{
(b(x) − 1)2 + (b(x2) − 1) − (a(x) − 1)2 − (c(x2) − 1)

}
. (89)

The ligand inventories shown in equations 12–14 are introduced into equation 89
and the resulting equation is expanded to give the following generating function:

Û (x)(C) = 2x7 + 5x8 + 17x9 + 48x10 + 142x11 + 391x12 + 1113x13 + 3104x14

+ 8780x15 + 24809x16 + 70750x17 + 202552x18 + 584158x19

+ 1693269x20 + · · · (90)

Let U (C)

k be the (corrected) number of chiral unbalanced promolecules (or
3D-trees), where each pair of two enantiomers is counted just once. The corre-
sponding generating function for enumerating them is represented as follows:

U (x)(C) =
∞∑

k=0

U (C)

k xk . (91)

The generating function is obtained by applying equation 5 to this case, i.e.,

U (x)(C) = G(x)(C) − C(x)(C) (92)

into which equations 44 and 68 are introduced so as to give the following func-
tional equation:

U (x)(C) = x

24

{
b(x)4 + 3b(x2)2 + 8b(x)b(x3) − 6a(x)2c(x2) − 6c(x4)

}

− 1
4

{
(b(x) − 1)2 + (b(x2) − 1) − (a(x) − 1)2

+ (c(x2) − 1) − 2(a(x2) − 1)
}

. (93)

The ligand inventories shown in equations 12–14 are introduced into equation
93. After the expansion of the resulting equation, the coefficient U (C)

k of each
term xk is collected up to carbon content 20 in the corresponding column of
table 1.
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3.3. Enumeration of balanced 3D-trees

Balanced 3D-trees are represented by X–X, p–p (p–p), or p–p, as shown in
figure 5. Among the terms appearing in equation 22, the terms for 2-cycles (i.e.,
b2 and c2) are selected to characterize these three types:

1
2

(b2 + c2) , (94)

where the top fraction (1/2) represents the average of the results due to the two
terms at issue.

Let B (AC)

k be the number of inequivalent balanced 3D-trees of carbon con-
tent k, which are achiral ones plus enantiomeric pairs of chiral ones. Each B (AC)

k
appears in the following generating function:

B(x)(AC) =
∞∑

k=1

B (AC)

k xk . (95)

By replacing ad , cd , and bd by a(xd) − 1, c(xd) − 1, and b(xd) − 1, respectively,
equation 94 is converted into the corresponding functional equation as follows:

B(x)(AC) = 1
2

{
(b(x2) − 1) + (c(x2) − 1)

}
. (96)

The ligand inventories shown in equations 13 and 14 are introduced into equa-
tion 96. After the expansion of the resulting equation, the coefficient B (AC)

k of
each term xk is collected up to carbon content 20 in the corresponding column
of table 2.

Let B̂ (AC2)

k be the uncorrected number of inequivalent balanced 3D-trees of
carbon content k, which are achiral and chiral.

B̂(x)(AC2) =
∞∑

k=1

B̂ (AC2)

k xk . (97)

Because the term for a 2-cycle appearing in equation 26 is b2, it is replaced by
b(x2)−1. Thereby, the corresponding functional equation is obtained as follows:

B̂(x)(AC2) = b(x2) − 1. (98)

The ligand inventory shown in equation 14 is introduced into equation 98.

B̂(x)(AC2) = x2 + x4 + 2x6 + 5x8 + 11x10 + 28x12 + 74x14

+ 199x16 + 551x18 + 1553x20 + · · · . (99)
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Table 2
The numbers of balanced 3D-trees or alkanesa .

k B(AC)

k B(AC2)

k B(A)

k B(C)

k

2 1 1 1 0
4 1 1 1 0
6 2 2 2 0
8 5 6 4 1
10 11 14 8 3
12 28 38 18 10
14 74 104 44 30
16 199 287 111 88
18 551 806 296 255
20 1,553 2,295 811 742

aThe numbers of balanced 3D-trees are obtained under several conditions, i.e., B(AC)

k : achiral and

chiral balanced 3D-trees, where a pair of enantiomers is counted just once, B(AC2)

k : achiral and chi-

ral balanced 3D-trees, where two enantiomers of each pair are counted separately, B(A)

k : achiral

balanced 3D-trees, and B(C)

k : chiral balanced 3D-trees, where each pair of enantiomers is counted
just once.

Let B̂ (A)

k be the uncorrected number of inequivalent balanced 3D-trees of
carbon content k, which are achiral.

B̂(x)(A) =
∞∑

k=1

B̂ (A)

k xk . (100)

Because the terms for 2-cycles appearing in equation 30 is c2, it is replaced by
c(x2)−1. Thereby, the corresponding functional equation is obtained as follows:

B̂(x)(A) = c(x2) − 1. (101)

The ligand inventory shown in equation 13 is introduced into equation 98 to give
the following generating function:

B̂(x)(A) = x2 + x4 + 2x6 + 5x8 + 11x10 + 28x12 + 74x14

+ 199x16 + 551x18 + 1553x20 + · · · . (102)

Alternatively, achiral balanced 3D-trees are represented by X–X or p–p, as
exemplified in figure 5. They are in agreement with the terms for 2-cycles (i.e.,
a2 and c2). On the analogy of the derivation of equation 94, we obtain the fol-
lowing CI-CF:

1
2

(a2 + c2) , (103)
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where the top fraction (1/2) represents the average of the results due to the two
terms at issue.

Let B (A)

k be the (corrected) number of inequivalent balanced 3D-trees of car-
bon content k, which are achiral. Each B (A)

k appears in the following generating
function:

B(x)(A) =
∞∑

k=1

B (A)

k xk . (104)

By replacing ad and cd by a(xd) − 1 and c(xd) − 1, equation 103 is converted
into the corresponding functional equation as follows:

B(x)(A) = 1
2

{
(a(x2) − 1) + (c(x2) − 1)

}
. (105)

The ligand inventories shown in equations 12 and 13 are introduced into equa-
tion 105. After the expansion of the resulting equation, the coefficient B (A)

k of
each term xk is collected up to carbon content 20 in the corresponding column
of table 2.

The subtraction of c2 from equation 94 gives the following CI-CF:

1
2

(b2 − c2) . (106)

Let B̂ (C)

k be the (uncorrected) number of inequivalent balanced 3D-trees of
carbon content k, which are chiral. Each B̂ (C)

k appears in the following generating
function:

B̂(x)(C) =
∞∑

k=1

B̂ (C)

k xk . (107)

By replacing bd and cd by b(xd) − 1 and c(xd) − 1, equation 106 is converted
into the corresponding functional as follows:

B̂(x)(C) = 1
2

{
(b(x2) − 1) − (c(x2) − 1)

}
, (108)

which is also obtained by the subtraction B̂(x)(C) = B(x)(AC) − B̂(x)(A) (cf. equa-
tions 96 and 98). Because the present enumeration is concerned with carbon con-
tents, the value B̂(x)(C) usually vanishes, i.e.,

B̂(x)(C) = 0. (109)

The subtraction of equation 103 from 94 gives the following CI-CF:

1
2

(b2 − a2) . (110)



S. Fujita / Combinatorial enumeration of three-dimensional trees as stereochemical models 177

Let B (C)

k be the corrected number of inequivalent balanced 3D-trees of carbon
content k, which are chiral. Each B (C)

k appears in the following generating func-
tion:

B(x)(C) =
∞∑

k=1

B (C)

k xk . (111)

By replacing ad and bd by a(xd) − 1 and b(xd) − 1, equation 110 is converted
into the corresponding counting series as follows:

B(x)(C) = 1
2

{
(b(x2) − 1) − (a(x2) − 1)

}
. (112)

The ligand inventories shown in equations 12 and 14 are introduced into equa-
tion 112. After the expansion of the resulting equation, the coefficient B (C)

k of
each term xk is collected up to carbon content 20 in the corresponding column
of table 2.

Let B (AC2)

k be the (corrected) number of inequivalent balanced 3D-trees of
carbon content k, which are achiral and chiral.

B(x)(AC2) =
∞∑

k=1

B (AC2)

k xk . (113)

To evaluate B(x)(AC2), we sum up equations 94 and 110 to give:

1
2

(b2 + c2) + 1
2

(b2 − a2) = b2 + 1
2

(c2 − a2) . (114)

By replacing ad , cd , and bd by a(xd) − 1, c(xd) − 1, and b(xd) − 1, respectively,
equation 94 is converted into the corresponding functional equation as follows:

B(x)(AC2) = (b(x2) − 1) + 1
2

{
(c(x2) − 1) − (a(x2) − 1)

}
. (115)

The ligand inventories shown in equations 12–14 are introduced into equation
115. The resulting coefficient B (AC2)

k are collected up to carbon content 20 in the
corresponding column of table 2.

The corrected and uncorrected functional equations for evaluating balanced
3D-trees satisfy the following relationships:

B(x)(AC) = B(x)(A) + B(x)(C), (116)

B(x)(AC) = B̂(x)(A) + B̂(x)(C), (117)

B(x)(AC2) = B(x)(AC) + B(x)(C), (118)

B̂(x)(AC2) = B(x)(AC) + B̂(x)(C). (119)



178 S. Fujita / Combinatorial enumeration of three-dimensional trees as stereochemical models

Thus, equation 116 is derived from equations 96, 105, and 112 (cf. table 2); and
equation 117 is derived from equations 96, 101, and 108 or alternatively from
the data of table 2, 102, and 109. On the other hand, equation 118 is derived
from equations 115, 96, and 112 (cf., table 2); and equation 119 is derived from
equation 98, 96, and 108 or alternatively from equation 99, the data of table 2,
and equation 109.

3.4. Enumeration of 3D-trees

3.4.1. Adjusted contaminants
Because the number of unbalanced 3D-trees and the number of balanced

3D-trees have been obtained under the four conditions, the addition of them
gives the net number of 3D-trees, i.e.,

N (x) = U (x) + B(x) = G(x) − C(x) + B(x), (120)

where the superscripts showing the conditions are omitted. In order to obtain
the N (x), we define A(x) for evaluating adjusted contaminants as follows:

A(x) = C(x) − B(x). (121)

Thereby, we can place

N (x) = G(x) − A(x). (122)

According to the four conditions, we obtain the following functional equations
for evaluating adjusted contaminants:

A(x)(AC) = C(x)(AC) − B(x)(AC)

= 1
4

{
(b(x) − 1)2 − (b(x2) − 1) + (a(x) − 1)2 − (c(x2) − 1)

}
, (123)

A(x)(AC2) = Ĉ(x)(AC2) − B̂(x)(AC2)

= C(x)(AC2) − B(x)(AC2)

= 1
2

{
(b(x) − 1)2 − (b(x2) − 1)

}
, (124)

A(x)(A) = Ĉ(x)(A) − B̂(x)(A)

= C(x)(A) − B(x)(A)

= 1
2

{
(a(x) − 1)2 − (c(x2) − 1)

}
, (125)

A(x)(C) = Ĉ(x)(C) − B̂(x)(C)

= C(x)(C) − B(x)(C)

= 1
4

{
(b(x) − 1)2 − (b(x2) − 1) − (a(x) − 1)2 + (c(x2) − 1)

}
. (126)
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Thus, equation 123 is obtained by using equations 24 and 96; equation 124 is
obtained by using equations 28 and 98 or by using equations 48 and 115; equa-
tion 125 is obtained by using equations 32 and 101 or by using equations 36 and
105; and 126 is obtained by using equations 40 and 108 or by using equations
44 and 112.

3.4.2. 3D-trees
Because G(x) and A(x) have been evaluated under the four conditions in

the preceding discussions, we are able to obtain N (x) according to equation 122:

Theorem 7. Let G(x) (equation 2) be a generating function for counting inequiv-
alent uninuclear promolecules. Let A(x) (equation 121) be a generating function
for counting inequivalent adjusted contaminants. Then, the subtraction N (x) =
G(x) − A(x) (equation 122) gives the numbers of inequivalent 3D-trees as its
coefficients. Thus, the coefficients satisfy the relationship Nk = Gk − Ak (k: non-
negative integers).

Let N (AC)

k be the number of inequivalent achiral promolecules (or 3D-trees)
plus inequivalent enantiomeric pairs of chiral promolecules (or 3D-trees) of car-
bon content k. Then, a generating function for enumerating them can be written
as follows:

N (x)(AC) =
∞∑

k=1

N (AC)

k xk . (127)

The generating function is obtained by applying equation 122 to this case, i.e.,

N (x)(AC) = G(x)(AC) − A(x)(AC). (128)

Hence, we obtain the following functional equation from equations 24 and 123,
i.e,

N (x)(AC) = x

24

{
b(x)4 + 3b(x2)2 + 8b(x)b(x3) + 6a(x)2c(x2) + 6c(x4)

}

−1
4

{
(b(x) − 1)2 − (b(x2) − 1) + (a(x) − 1)2 − (c(x2) − 1)

}
. (129)

Let N (AC2)

k be the number of inequivalent achiral promolecules (or 3D-trees)
plus inequivalent chiral promolecules (or 3D-trees) of carbon content k, where
two enantiomers of each pair are counted separately. Then, a generating func-
tion for enumerating them can be written as follows:

N (x)(AC2) =
∞∑

k=1

N (AC2)

k xk . (130)
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The generating function is obtained by applying equation 122 to this case, i.e.,

N (x)(AC2) = G(x)(AC2) − A(x)(AC2). (131)

By considering equations 28 and 124, we obtain the following functional equa-
tion:

N (x)(AC2) = x

12

{
b(x)4 + 3b(x2)2 + 8b(x)b(x3)

}

− 1
2

{
(b(x) − 1)2 − (b(x2) − 1)

}
. (132)

Let N (A)

k be the number of inequivalent achiral promolecules of carbon con-
tent k, which appears as each coefficient of the following generating function:

N (x)(A) =
∞∑

k=0

N (A)

k xk . (133)

The generating function is obtained by applying equation 122 to this case, i.e.,

N (x)(A) = G(x)(A) − A(x)(A). (134)

This equation is combined with equations 36 and 125 to give the following func-
tional equation:

N (x)(A) = x

2

{
a(x)2c(x2) + c(x4)

} − 1
2

{
(a(x) − 1)2 − (c(x2) − 1)

}
. (135)

This equation is further transformed into a simpler one by using equation 9.

N (x)(A) = 1
2

{
a(x) + xc(x4) + c(x2)

} − 1. (136)

Let N (C)

k be the number of inequivalent chiral promolecules (or 3D-trees),
where each pair of two enantiomers is counted just once. The corresponding gen-
erating function for enumerating them is represented as follows:

N (x)(C) =
∞∑

k=0

N (C)

k xk . (137)

The generating function is obtained by applying equation 122 to this case, i.e.,

N (x)(C) = G(x)(C) − A(x)(C). (138)

This equation is modified by equations 44 and 126 to give the following func-
tional equation:
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N (x)(C) = x

24

{
b(x)4 + 3b(x2)2 + 8b(x)b(x3) − 6a(x)2c(x2) − 6c(x4)

}

− 1
4

{
(b(x) − 1)2 − (b(x2) − 1) − (a(x) − 1)2 + (c(x2) − 1)

}
. (139)

The ligand inventories shown in equations 12–14 are introduced into equa-
tions 129, 132, 135, 136, and 139. After the expansion of the resulting equa-
tions, the coefficients of the terms xk under the respective conditions are
collected up to carbon content 20 in the corresponding columns of table 3. As
found by the derivation procedure, the values collected in table 3 are alterna-
tively obtained by summing up the corresponding values collected in tables 1 and
2. In addition, they satisfy the following equations:

N (x)(AC) = N (x)(A) + N (x)(C), (140)

N (x)(AC2) = N (x)(AC) + N (x)(C), (141)

as found in table 3.

4. Discussions

4.1. Comments on contaminants and balanced 3D-trees

4.1.1. Uninuclear and binuclear 3D-trees for charactering a 3D-tree of meso-type
The comparison between equations 33 (Ĉ(x)(A)) and 37 (C(x)(A)) provides us

with a deeper insight to how 3D-trees of meso-type participate in enumeration
as contaminants. For example, the coefficient of the term x8 of equation
33 (Ĉ(x)(A)) is equal to 39, while the corresponding coefficient in equation
37 is equal to 38. The difference 1 (=39 − 38) comes from whether the
meso-3D-tree (36) is counted as an achiral 3D-tree or not. This point shall be
discussed in detail, where the relationship between uninuclear promolecules and
binuclear promolecules for the meso-3D-tree (36) shall be clarified especially with
respect to their chiralities or achiralities. For this purpose, figure 7 is redrawn
into figure 11.

Let us first examine the enumeration result based on equation 64 for
G(x)(A). The enumeration result involves an irregular specification with respect to
the achirality of the meso-3D-tree (36), because it is concerned only with carbon
contents. This irregularity can be clarified by the following treatment.

The uninuclear promolecules (49–52 shown in figure 11) for the meso-
3D-tree (36) are generated from the tetrahedral uninuclear skeleton (30) by plac-
ing four proligands selected from a set of proligands:

X = {H, X1, X2; p1, p2, p3, p4; p1, p2, p3, p4}, (142)
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Table 3
The numbers of 3D-trees or alkanesa .

k N (AC)

k N (AC2)

k N (A)

k N (C)

k

1 1 1 1 0
2 1 1 1 0
3 1 1 1 0
4 2 2 2 0
5 3 3 3 0
6 5 5 5 0
7 9 11 7 2
8 19 24 14 5
9 38 55 21 17

10 88 136 40 48
11 203 345 61 142
12 509 900 118 391
13 1,299 2,412 186 1,113
14 3,459 6,563 355 3,104
15 9,347 18,127 567 8,780
16 25,890 50,699 1,081 24,809
17 72,505 143,255 1,755 70,750
18 205,877 408,429 3,325 202,552
19 589,612 1,173,770 5,454 584,158
20 1,703,575 3,396,844 10,306 1,693,269

aThe numbers of 3D-trees are obtained under several conditions, i.e., N (AC)

k : achiral and chiral

3D-trees, where a pair of enantiomers is counted just once, N (AC2)

k : achiral and chiral 3D-trees,

where two enantiomers of each pair are counted separately, N (A)

k : achiral 3D-trees, and N (C)

k :
chiral 3D-trees, where each pair of enantiomers is counted just once.

Figure 11. Uninuclear and binuclear 3D-trees for charactering a 3D-tree of meso-type.
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where the symbols are used to represent as follows:

H = H (hydrogen) x0,

X1 = CH3 x,

X2 = CH2CH3 x2,

p1, p1 = RS- or S R-CH2CH(CH3)CH(CH3)CH2CH3 x7,

p2, p2 = RS- or S R-CH(CH3)CH(CH3)CH2CH3 x6,

p3, p3 = S- or R-CH(CH3)CH2CH3 x4,

p4, p4 = RS- or S R-CH(CH2CH3)CH(CH3)CH2CH3 x7.

(143)

According to these expressions, the uninuclear 3D-tree (49) is expressed as
H3p1, which corresponds to the term x × (x0)3 · x7 = x8. Similarly, the uninucle-
ar 3D-tree (50) is expressed as H2X1p2 (x × (x0)2 · x · x6 = x8), 51 as HX1X2p3
(x × x0 · x · x2 · x4 = x8), as 52 as H3p4 (x × (x0)3 · x7 = x8). It should be noted
that these expressions indicate that the uninuclear 3D-trees are regarded as being
chiral, whereas the corresponding meso-3D-tree (36) is achiral.

This irregular assignment is only apparent so as to be ascribed to the fact
the enumeration based on the tetrahedral uninuclear skeleton (30) fixes the cen-
tral vertex (•) as a core. The core is implicitly (or conceptually) differentiated
from other non-terminal vertices during the enumeration. Chemically speaking,
suppose that the nucleus is an isotopical carbon (13C) and other non-terminal
vertices are all 12C, although the isotopes 12C and 13C are regarded as the same
carbon atoms under several conditions.

The irregular assignment described in the preceding paragraphs can be
more quantitatively explained by using Fujita’s proligand method [16–18]. The
ligand inventories for the set X (equation 142) are obtained as follows:

ad = Hd + Xd
1 + X2

2, (144)

cd = Hd + Xd
1 + X2

2 + 2pd/2
1 pd/2

1 + 2pd/2
2 pd/2

2 + 2pd/2
3 pd/2

3 + 2pd/2
4 pd/2

4 , (145)

bd = Hd + Xd
1 + X2

2 + pd
1 + pd

1 + pd
2 + pd

2 + pd
3 + pd

3 + pd
4 + pd

4 . (146)

The number of achiral 3D-trees enumerate by equation 62 (corresponding
to equation 64 for G(x)(A)) is evaluated as follows:

G A = [H4 + X4
1 + X4

2] + [H3 X1 + H3 X2 + · · · ]
+ [H2 X2

1 + H2 X2
2 + · · · ] + [H2 X1 X2 + HX2

1X2 + · · · ]
+ [H2p1p1 + H2p2p2 + · · · ] + [HX1p1p1 + HX2p2p2 + · · · ]
+ [p2

1p2
1 + p2

2p2
2 + · · · ], (147)

which is obtained by introducing the ligand inventories (equations 144–146) into
equation 62. The resulting generating function (equation 147) does not con-
tain H3p1 for 49, H2X1p2 for 50, HX1X2p3 for 51, nor H3p4 for 52. Because
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HX1X2p3 corresponds to the achiral 51, the evaluation by equation 147 results
in the underestimation concerned with 51.

On the other hand, the number of chiral 3D-trees enumerate by equation
66 (corresponding to equation 68 for G(x)(C)) is evaluated by introducing the lig-
and inventories (equations 144–146) into equation 66. The resulting equation is
expanded to give the following generating function:

GC = · · · + 1
2

(
H3p1 + H3p1

)
· · · + 1

2

(
H2X1p2 + H2X1p2

)
· · ·

+ (
HX1X2p3 + HX1X2p3

) · · · + 1
2

(
H3p4 + H3p4

)
· · · , (148)

where other terms are omitted so as to leave only necessary terms. Thus,
the resulting generating function (equation 148) contains H3p1 (H3p1) for 49,
H2X1p2 (H2X1p2) for 50, and H3p4 (H3p4) for 52. The term (HX1X2p3 +
HX1X2p3) should be divided into two parts, i.e., the term corresponding to p3p3

for the meso-3D-tree (51) and the term 1
2

(
p2

3 + p2
3

)
for the enantiomeric pair

(50/50). Note that the term p3p3 should be regarded as 1
2

(
p3p3 + p3p3

)
, because

p3p3 and p3p3 are regarded irregularly as enantiomers and counted as a pair of
enantiomers in the enumeration as uninuclear promolecules. Because HX1X2p3
corresponds to the achiral 51, the evaluation by equation 148 results in the over-
estimation concerned with 51.

Let us consider that the binuclear promolecules (90–93 shown in figure 11)
for the meso-3D-tree (36) are generated from the binuclear skeleton (31) by plac-
ing two proligands selected from the set (X) shown in equation 142. The num-
ber of achiral 3D-trees enumerated by equation 30 (corresponding to equation
32 for Ĉ(x)(A)) is evaluated by introducing the ligand inventories (equations 144–
146) into equation 30. The resulting equation is expanded to give the following
generating function:

ĈA =
[
H2 + X2

1 + X2
2

]
+ [HX1 + HX2 + X1X2] + [p1p1 + p2p2 + p3p3

+ p4p4], (149)

which contains the term p3p3 for 92 (corresponding to 51). Because the pres-
ence of the term p3p3 in equation 149 correctly specifies the achirality of 92, the
underestimation due to the absence of the term p3p3 in G A (equation 147) can-
not be corrected by equation 149.

The corrected functional equation corresponding to equation 149 is calcu-
lated by introducing the ligand inventories (equations 144–146) into equation 34
as follows:

CA = [H2 + X2
1 + X2

2] + [HX1 + HX2 + X1X2], (150)
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which does not contain the term p3p3 for 92 (corresponding to 51). Although
equation 150 gives a rather erroneous specification of the achirality of 92, it can
correct the underestimation of G A (equation 147).

The number of chiral 3D-trees enumerated by equation 38 (corresponding
to equation 40 for Ĉ(x)(C)) is evaluated by introducing the ligand inventories
(equations 144–146) into equation 38. The resulting equation is expanded to give
the following generating function:

ĈC = 1
2

(
X1p1 + X1p1

) · · · + 1
2

(
X3p2 + X3p2

) · · · + 1
2

(
X1p4 + X1p4

) · · ·

+ 1
2

(
p2

3 + p2
3

)
· · · , (151)

where other terms are omitted so as to leave only necessary terms. Thus, the
resulting generating function (equation 151) contains the term X1p1 (X1p1) for
90 (cf. 49), the term X3p2 (X3p2) for 91 (cf. 50), and the term X1p4 (X1p4) for
93 (cf. 52); and it does not contain the term p3p3 for 92 (cf. 51) but contains the
term 1

2

(
p2

3 + p2
3

)
for the enantiomeric pair (50/50). Because equation 151 cor-

rectly specifies the achirality of 92 by the absence of the term p3p3, it cannot
correct the overestimation of GC (equation 148).

The corrected functional equation corresponding to equation 151 is calcu-
lated by introducing the ligand inventories (equations 144–146) into equation 42
as follows:

CC = 1
2

(
X1p1 + X1p1

) · · · + 1
2

(
X3p2 + X3p2

) · · · + 1
2

(
X1p4 + X1p4

) · · ·

+ 1
2

(
p2

3 + p2
3

)
· · · + p3p3 · · · , (152)

which contains the term p3p3 for the achiral promolecule 92 (cf. 51) as well as
the term 1

2

(
p2

3 + p2
3

)
for the enantiomeric pair (50/50). Although equation 152

erroneously specifies the achirality of 92, it can correct the overestimation of GC
(equation 148).

The evaluation of the 3D-Tree of meso-type (p3p3) and the related enantio-
meric pair ( 1

2 (p2
3 + p2

3)) is summarized in table 4. The combination of equations
149 and 151 and that of equations 150 and 152 give the following equations:

CAC = ĈA + ĈC , (153)

CAC = CA + CC , (154)

which correspond to equations 50 and 51. Note that the CAC is obtained by
introducing the ligand inventories (equations 144–146) into equation 22 corre-
sponding to equation 24.

The results described above are restated by referring to carbon contents.
The evaluation of the number of achiral unbalanced 3D-trees in terms of G A
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Table 4
Evaluation of a 3D-tree of meso-type and the related enantiomeric pair.

Uninuclear Binuclear

G(x)(AC) G(x)(A) G(x)(C) C(x)(AC) Ĉ(x)(A) Ĉ(x)(C) C(x)(A) C(x)(C)

G AC G A GC CAC ĈA ĈC CA CC

p3p3 1 0 1 1 1 0 0 1
1
2 (p2

3 + p2
3) 1 0 1 1 0 1 0 1

Contribution to x8 2 0 2 2 1 1 0 2

(equation 147) −ĈA (equation 149) results in an overdrawn account by the term
p3p3. Hence the value 48x8−39x8 = 9x8 (equation 33 minus equation 41) fails in
counting p3p3 for 92 (cf. 51). On the other hand, the evaluation of the number of
chiral unbalanced 3D-trees in terms of GC (equation 148) −ĈC (equation 151)
results in overestimation by the term p3p3. Hence, the value 55x8 − 50x8 = 5x8

(equation 69 − equation 41) counts unnecessary p3p3 for 92 (cf. 51).
It follows that the evaluation of the number of achiral and chiral unbal-

anced 3D-trees in terms of G AC − CAC = (G A + GC ) − (ĈA + ĈC ) = (G A −
ĈA)+(GC − ĈC) results in cancellation of the underestimation due to (G A − ĈA)

and the overestimation due to (GC −ĈC). Hence, U (x)(AC) (equation 72) does not
suffer from such under- nor overestimation, i.e., (48 − 39) + (55 − 50) = 14, as
collected in table 1.

4.1.2. Comments on balanced 3D-trees
The enumeration result based on equation 101 for B̂(x)(A) involves another

type of irregular specification with respect to the meso-3D-tree (36), because it is
concerned only with carbon contents. Thus, although the coefficient of the term
x8 in equation 102 is equal to 5, there are four achiral balanced 3D-trees, i.e.,
32–36, as shown in figure 5. This irregularity should be discussed in detail.

The ligand inventories (equations 144–146) are introduced into the cycle
index c2 corresponding to equation 101. Thereby, we obtain the following gen-
erating function:

B̂A = H2 + X2
1 + X2

2 + 2p1p1 + 2p2p2 + 2p3p3 + 2p4p4. (155)

Among the terms appearing in the right-hand side of equation 155, the
coefficient 2 of the term p3p3 indicates that the term p3p3 (corresponding to
x8) is regarded as an ordered pair and differentiated from the inverse pair p3p3.
Thus, the contribution of 36 to the term x8 (via the term p3p3) is doubly evalu-
ated. Hence, the contribution of each balanced 3D-tree is found to be 32 (1), 33
(1), 34 (1), and 36 (2) so as to give 5x8 in equation 102.
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To correct the irregularity of B̂(x)(A) (equation 101), we use equation 105
for B(x)(A). The ligand inventories (equations 144–146) are introduced into equa-
tion 103 corresponding to equation 105. Thereby, we obtain the following gen-
erating function:

BA = H2 + X2
1 + X2

2 + p1p1 + p2p2 + p3p3 + p4p4. (156)

Among the terms appearing in the right-hand side of equation 156, the coeffi-
cient 1 of the term p3p3 indicates that the term p3p3 (corresponding to x8) is
equalized to the inverse term p3p3. Thus, the contribution of 36 to the term x8

(via the term p3p3) is counted just once. Hence, the contribution of each bal-
anced 3D-tree is found to be 32 (1)–36 (1) so as to give the value B (A)

8 = 4 shown
in table 2.

The enumeration result based on equations 108 for B̂(x)(C) involves another
type of irregular specification with respect to the enantiomeric pair (35 and 35)
because it is again concerned only with carbon contents. Thus, all of the terms
vanish in equation 109 in spite of the presence of the enantiomeric pair (35 and
35).

The ligand inventories (equations 144–146) are introduced into equa-
tion 106 corresponding to equation 108. Thereby, we obtain the following gen-
erating function:

B̂C = 1
2
(p2

1 + p2
1) + 1

2
(p2

2 + p2
2) + 1

2
(p2

3 + p2
3) + 1

2
(p2

4 + p2
4)

− p1p1 − p2p2 − p3p3 − p4p4. (157)

Because the present enumeration result is concerned only with carbon contents,
the combined term represented by 1

2 (p2
3 + p2

3) − p3p3 vanishes, as already found
in equation 109.

To correct the irregularity of B̂(x)(C) (equation 108), we use equation 112
for B(x)(C). The coefficient 1 of the term x8 is in agreement with the presence of
one enantiomeric pair of chiral balanced 3D-trees, i.e., 35 and 35, as collected
in table 2 (B (C)

8 = 1). Thus, the ligand inventories (equations 144–146) are intro-
duced into equation 110 corresponding to equation 112. Thereby, we obtain the
following generating function:

BC = 1
2
(p2

1 + p2
1) + 1

2
(p2

2 + p2
2) + 1

2
(p2

3 + p2
3) + 1

2
(p2

4 + p2
4). (158)

Because the present enumeration result is concerned only with carbon contents,
the combined term represented by 1

2 (p2
3 + p2

3) for x8 corresponds to the enantio-
meric pair of 35 and 35,

The results of the evaluation of balanced 3D-trees are summarized in
table 5. The combination of equations 155 and 157 and that of equations 156
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Table 5
Evaluation of balanced 3D-trees.

B(x)(AC) B̂(x)(A) B̂(x)(C) B(x)(A) B(x)(C)

BAC B̂A B̂C BA BC

p3p3 1 2 −1 1 0
1
2 (p2

3 + p2
3) 1 0 1 0 1

contribution to x8 2 2 0 1 1

and 158 give the following equations:

BAC = B̂A + B̂C , (159)

BAC = BA + BC , (160)

which correspond to equations 116 and 117. Note that the BAC is obtained by
introducing the ligand inventories (equations 144–146) into equation 94 corre-
sponding to equation 96.

4.2. Comments on gross numbers

4.2.1. Gross numbers by G(x)(AC2)

The comparison of the coefficient 140x8 in C(x)(AC2) (equation 49) and the
coefficient 139x8 in Ĉ(x)(AC2) (equation 29) again exemplifies the effect of the
3D-tree 36 of meso-type. The correction by equation 49 is necessary because
of the overestimation of G(x)(AC2) (equation 61), which contains the coefficient
158x8.

After introducing equations 144–146 into equation 58, the resulting equa-
tion is expanded to give the following generating function:

G AC2 = · · · +
(

H3p1 + H3p1

)
· · · +

(
H2X1p2 + H2X1p2

)
· · ·

+ 2
(
HX1X2p3 + HX1X2p3

) · · · +
(

H3p4 + H3p4

)
· · · , (161)

where other terms are omitted so as to leave only necessary terms. Thus, the
resulting generating function (equation 161) contains the coefficient 1 of each
term H3p1 or H3p1 (for 49 or its enantiomer), 1 of each term H2X1p2 or
H2X1p2 (for 50 or its enantiomer), and 1 of each term H3p4 or H3p4 (for 52
for its enantiomer). The coefficient 2 of the term (HX1X2p3 + HX1X2p3) should
be divided into two parts, i.e., the term corresponding to 1 of each term p3p3
or p3p3 (for the meso-3D-tree (51)) and 1 of the term p2

3 or p2
3 (for the chiral

3D-tree (35 or 35)). Note that the terms p3p3 and p3p3 are counted separately,
because p3p3 and p3p3 are regarded irregularly as enantiomers.
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Table 6
Evaluation of a 3D-tree of meso-type and the related enantiomeric pair.

Uninuclear Binuclear

G(x)(AC2) Ĉ(x)(AC2) C(x)(AC2)

G AC2 ĈAC2 CAC2

p3p3, p3p3 2 1 2

p2
3, p2

3 2 2 2

Contribution to x8 4 3 4

After introducing equations 146 into 26, the resulting equation is expanded
to give the following generating function:

ĈAC2 = (
X1p1 + X1p1

) · · · + (
X3p2 + X3p2

) · · · + (
X1p4 + X1p4

) · · ·
+

(
p2

3 + p2
3

)
· · · + p3p3 · · · , (162)

where other terms are omitted so as to leave only necessary terms. Thus, the
resulting generating function (equation 162) contains the coefficient 1 of the term
X1p1 or X1p1 (for 90 (cf. 49), total coefficient = 2), 1 of the term X3p2 or X3p2
(for 91 (cf. 50), total coefficient = 2), 1 of the term X1p4 or X1p4 (for 93 (cf. 52),
total coefficient = 2), 1 of the term p2

3 or p2
3 (for the enantiomeric pair (50/50),

total coefficient = 2), and 1 of the term p3p3 (for 92 (cf. 51)).
After introducing equations 146 into 46, the resulting equation is expanded

to give the following generating function:

CAC2 = (
X1p1 + X1p1

) · · · + (
X2p2 + X2p2

) · · · + (
X1p4 + X1p4

) · · ·
+

(
p2

3 + p2
3

)
· · · + 2p3p3 · · · , (163)

where other terms are omitted so as to leave only necessary terms. Thus, the
resulting generating function (equation 163) contains the coefficient 1 of the term
X1p1 or X1p1 (for 90 (cf. 49), the total coefficient = 2), 1 of the term X2p2 or
X2p2 (for 91 (cf. 50)), 1 of the term X1p4 or X1p4 (for 93 (cf. 52), the total
coefficient = 2), 1 of the term p2

3 or p2
3 (for the enantiomeric pair (50/50), the

total coefficient = 2), and 2 of the term p3p3 (for 92 (cf. 51)).
As summarized in table 6, the difference between ĈAC2 and CAC2 is the

coefficient 1 versus 2 for the term p3p3. This causes the difference between the
coefficient 139x8 in Ĉ(x)(AC2) (equation 29) and the coefficient 140x8 in C(x)(AC2)

(equation 49). Thus the overestimation in G AC2 is cancelled by C(x)(AC2) (equa-
tion 49), i.e., U (AC2)

8 = G (AC2)

8 − C (AC2)

8 = 158 − 140 = 18, as collected in table 1.
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4.2.2. Gross numbers by G(x)(AC)

The gross number given by G(x)(AC) (equation 57) is unnecessary to be
corrected, where the uncorrected contaminants evaluated by C(x)(AC) (equation
25) can be used. For example, the coefficients of x8 in these equations show that
U (AC)

8 = G (AC)

8 − C (AC)

8 = 103 − 89 = 14, as collected in table 1.
After introducing equations 144–146 into equation 54, the resulting equa-

tion is expanded to give the following generating function:

G AC = · · · + 1
2

(
H3p1 + H3p1

)
· · · + 1

2

(
H2X1p2 + H2X1p2

)
· · ·

+ (
HX1X2p3 + HX1X2p3

) · · · + 1
2

(
H3p4 + H3p4

)
· · · , (164)

where other terms are omitted so as to leave only necessary terms.
On the other hand, the evaluation of contaminants is conducted by intro-

ducing equations 144–146 into equation 22. The resulting equation is expanded
to give the following generating function:

CAC = 1
2

(
X1p1 + X1p1

) · · · + 1
2

(
X3p2 + X3p2

) · · · + 1
2

(
X1p4 + X1p4

) · · ·

+ 1
2

(
p2

3 + p2
3

)
· · · + p3p3 · · · , (165)

where other terms are omitted so as to leave only necessary terms.
The term HX1X2p3 + HX1X2p3 in equation 164 can be rewritten as

1
2

(
p2

3 + p2
3

)
+ 1

2

(
p3p3 + p3p3

)
. Because they correspond to the relevant terms

appearing in equation 165, they are canceled during the process of U (AC)

8 = G (AC)

8 −
C (AC)

8 = 103 − 89 = 14, which corresponds to G AC − CAC .
Strictly speaking, the terms p3p3 and p3p3 in 1

2

(
p3p3 + p3p3

)
(equation

164) are regarded as a pair of tentative or hypothetical enantiomers, because
the terms HX1X2p3 (for p3p3) and HX1X2p3 (for p3p3) are different from each

other but we can place HX1X2p3 = HX1X2p3. On the other hand, the term
p3p3 (equation 165) is regarded as being achiral. As a result, the successful
cancellation described above comes from the methodology in which the term
1
2

(
p3p3 + p3p3

)
in the evaluation as uninuclear promolecules is equalized to the

term p3p3 in the evaluation as binuclear promolecules.

4.3. Partial cycle indices with chirality fittingness

4.3.1. Corrected functions
Although the CI-CF(K; $d) shown in equation 22 (for evaluating C(x)(AC))

does not contain the sphericity index a2, the equations used for correction, i.e.,
equation 34 for C(x)(A) (equation 36), equation 103 for B(x)(A) (equation 105),
and equation 110 for B(x)(C) (equation 112), contain the sphericity index a2. The
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appearance of a2 should be discussed in a more systematic fashion, although the
intuitive explanations have been already mentioned on the basis of geometrical
examination.

For this purpose, we apply PCI-CFs (partial cycle indices with chirality fit-
tingness) of the USCI approach [31,32] to the cases of binuclear 3D-trees. By
following the procedure described in [31], the PCI-CFs for the subgroups listed
in equations 16–20 are obtained as follows:

PCI-CF(K1, $d) = 1
4

b2
1 − 1

4
b2 − 1

4
a2

1 − 1
4

c2 + 1
2

a2, (166)

PCI-CF(K2, $d) = 1
2

b2 − 1
2

a2, (167)

PCI-CF(K3, $d) = 1
2

a2
1 − 1

2
a2, (168)

PCI-CF(K4, $d) = 1
2

c2 − 1
2

a2, (169)

PCI-CF(K, $d) = a2, (170)

where we use the USCI-CF table and the inverse table of marks for the isomor-
phic group C2v (Appendices E.5 and B.5 of Fujita’s book [23]).

To obtain equation 34 for C(x)(A) (equation 36), the term c2 for treating
meso-type in equation 30 has been replaced by the term a2. Such unnecessary
participation of the meso-type can be avoided more rationally as follows. Because
3D-trees of meso-type (e.g., p–p) belong to K4 (isomorphic to C′

s), the remaining
achiral groups, i.e., K3 (e.g., X–Y) and K (e.g., X–X), are used to evaluate achi-
ral contaminants. It follows that the PCI-CFs for these subgroups (equations 168
and 170) are summed up to give the following CI-CF:

CI-CF(K3 + K, $d) = PCI-CF(K3, $d) + PCI-CF(K, $d)

=
(

1
2

a2
1 − 1

2
a2

)
+ a2 = 1

2

(
a2

1 + a2

)
. (171)

This equation is identical with equation 34 for deriving C(x)(A) (equation 36).
To derive equation 103 for evaluating achiral balanced 3D-trees, the top

fraction (1/2) has been introduced rather intuitively. This introduction can be
done in a more rational way. Because achiral balanced 3D-trees belong to K4
(e.g., p—p) or K (e.g., X—X), they are evaluated by the sum of the correspond-
ing PCI-CFs (equations 169 and 170) as follows:

CI-CF(K4 + K, $d) = PCI-CF(K4, $d) + PCI-CF(K, $d)

=
(

1
2

c2 − 1
2

a2

)
+ a2 = 1

2
(a2 + c2) . (172)

This equation is identical with equation 103 for deriving B(x)(A) (equation 105).
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In the above discussion, equation 110 for B(x)(C) (equation 112) has been
obtained by the subtraction of equations 103 from 94. Because chiral bal-
anced 3D-trees belong to the subgroup K2, the same CI-CF can be alternatively
obtained by adopting the PCI-CF for the K2 (equation 167) as follows:

CI-CF(K2, $d) = PCI-CF(K2, $d)

= 1
2

(b2 − a2) . (173)

This equation is identical with equation 110 for deriving B(x)(C) (equation 112).

4.3.2. Balanced 3D-trees and adjusted contaminants
In the derivation of equation 94 for B(x)(AC) (equation 96), the top fraction

(1/2) has been introduced rather intuitively. This introduction can be done in a
more rational way. Because any balanced 3D-tree belongs to K2 (e.g., p–p or p–
p), K4 (e.g., p–p), or K (e.g., X–X), they are evaluated by the sum of the corre-
sponding PCI-CFs (equations 167, 169, and 170) as follows:

CI-CF(K2 + K4 + K, $d) = PCI-CF(K2, $d) + PCI-CF(K4, $d) + PCI-CF(K, $d)

=
(

1
2

b2 − 1
2

a2

)
+

(
1
2

c2 − 1
2

a2

)
+ a2

= 1
2

(b2 + c2) . (174)

This equation is identical with equation 94 for deriving B(x)(AC) (equation 96).
The discussion described here is easily extended to general case so as to give the
following theorem:

Theorem 8. Any balanced 3D-tree belongs to K2, K4, or K.

The PCI-CFs for the subgroups other than those used in equation 174 are
summed up to give the following CI-CF:

CI-CF(K1 + K3, $d) = PCI-CF(K1, $d) + PCI-CF(K3, $d)

=
(

1
4

b2
1 − 1

4
b2 − 1

4
a2

1 − 1
4

c2 + 1
2

a2

)
+

(
1
2

a2
1 − 1

2
a2

)

= 1
4

(
b2

1 − b2 + a2
1 − c2

)
. (175)

Note that the subgroup K1 characterizes chiral binuclear promolecules such as
X–p, p–q, and p–q, while the subgroup K3 characterizes achiral binuclear pro-
molecules such as X–Y. Obviously, the CI-CF (equation 175) is identical with
the one obtained by equation 22 − equation 94 so that it corresponds to equa-
tion 123 for evaluating adjusted contaminants A(x)(AC). In fact, the SIs (ad , cd ,
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Figure 12. A binuclear promolecule for a balance-edge and the corresponding uninuclear pro-
molecule. Such promolecules as X–X, p–p (p–p), and p–p exhibit this behavior. They belong to

K2, K4, or K.

and bd ) in equation 175 is replaced by a(xd) − 1, c(xd) − 1, and b(xd) − 1 to
give equation 123. This discussion holds true in general cases, as summarized as
a theorem:

Theorem 9. Any 3D-tree as an adjusted contaminant belongs to K1 or K3.

In addition, the sum of equations 174 and 175 gives the following CI-CF:

CI-CF(K1 · · · K, $d) = PCI-CF(K1, $d) + PCI-CF(K2, $d)

+ PCI-CF(K3, $d) + PCI-CF(K4, $d) + PCI-CF(K, $d)

= 1
4

(
b2

1 + b2 + a2
1 + c2

)
, (176)

which is identical with equation 22 for evaluating C(x)(AC).

4.3.3. Yet another proof
Equation 176 combined with theorems 8 and 9 indicates that the con-

taminants evaluated by C(x)(AC) are categorized into either balanced 3D-trees
(belonging to K2, K4, or K) or adjusted contaminants (belonging to K1 or K3).
Thereby, we are able to find a further proof of theorem 7 for N (x)(AC).

The G(x)(AC) of theorem 7 contains the balanced 3D-trees evaluated by
B(x)(AC) of theorem 8 as well as the adjusted contaminants evaluated by A(x)(AC)

of theorem 9.
Any balanced 3D-tree evaluated by B(x)(AC) of theorem 8 is a binuclear pro-

molecule (94), which corresponds to a uninuclear promolecule (95) in one-to-
one fashion, as shown in figure 12. This means that each balanced 3D-tree is
involved in the set of uninuclear promolecules (e.g., 95) just once without no
redundancy. It follows that such balanced 3D-trees should not be deleted.

On the other hand, any adjusted contaminant evaluated by A(x)(AC) of the-
orem 9 is a binuclear promolecule (96), which corresponds to uninuclear promol-
ecules (97 and 98) in one-to-two fashion, as shown in figure 13. This means that
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Figure 13. A binuclear promolecule for a slant-edge and the corresponding uninuclear promole-
cules. Such promolecules as X–Y, A–p (A–p), and p–q (p–q) exhibit this behavior. They belong to

K1 or K3.

each adjusted contaminant is involved doubly in the set of uninuclear promole-
cules. It follows that the duplication of the adjusted contaminant should be omit-
ted so as to assure theorem 7.

Similarly, theorem 7 for N (x)(A) can be alternatively proved. As found in the
derivation of G A (equation 147), the G(x)(A) of theorem 7 contains achiral bal-
anced 3D-trees (K) other than those of meso-type (K4) as well as achiral binu-
clear 3D-trees (K3). The achiral balanced 3D-trees (K) are contained without no
redundancy. Those of meso-type (K4) should be added to avoid the absence of
them. The achiral binuclear 3D-trees (K3) are contained duplicatedly so that the
one part should be deleted. Hence, the corresponding adjusted contaminants can
be evaluated as follows:

CI-CF(K3 − K4, $d) = PCI-CF(K3, $d) − PCI-CF(K4, $d)

=
(

1
2

a2
1 − 1

2
a2

)
−

(
1
2

c2 − 1
2

a2

)

= 1
2

(
a2

1 − c2

)
. (177)

This equation corresponds to A(x)(A) shown in equation 125.
Theorem 7 for N (x)(C) can be alternatively proved. As found in the deri-

vation of GC (equation 148), the G(x)(c) of theorem 7 contains chiral binuclear
3D-trees (K1) as well as achiral balanced 3D-trees of meso-type (K4). The chiral
binuclear 3D-trees (K1) are contained duplicatedly so that the one part should
be deleted. The achiral balanced 3D-trees of meso-type (K4) should be deleted.
Hence, the corresponding adjusted contaminants can be evaluated as follows:

CI-CF(K1 + K4, $d) = PCI-CF(K1, $d) + PCI-CF(K4, $d)

=
(

1
4

b2
1 − 1

4
b2 − 1

4
a2

1 − 1
4

c2 + 1
2

a2

)
+

(
1
2

c2 − 1
2

a2

)

= 1
4

(
b2

1 − b2 − a2
1 + c2

)
. (178)

This equation corresponds to A(x)(C) shown in equation 126.
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As an extension of this proof, we are able to develop yet another proof of
theorem 6 for U (x)(AC). Between the two uninuclear promolecules (97 and 98)
corresponding to the binuclear promolecule (96), a superior one is defined as fol-
lows:

Definition 4. Between the two uninuclear promolecules (97 and 98) correspond-
ing to the binuclear promolecule (96), the one 97 is defined as being superior to
98, if the proligand X contains the core selected according to definition 3. On
the other hand, the other one 98 is defined as being superior to 97, if the proli-
gand Y contains the core selected according to definition 3.

1. Suppose that a nuclear is selected as the core of definition 3 for the set of
uninuclear promolecules which correspond to an unbalanced 3D-tree. Then,
a terminal edge is selected to give the corresponding binuclear promole-
cule and the two relevant uninuclear promolecules. Between the two rele-
vant uninuclear promolecules, the superior one is saved and the other one
is deleted. This procedure is repeated by selecting one of the resulting edges
so as to reach the representative promolecule whose nuclear is identical with
the selected core. Thereby, the set of uninuclear promolecules is reduced into
one unbalanced promolecule (3D-tree) to be counted just once. This means
that the finally saved uninuclear promolecule contributes by unit to U (x) =
G(x) − C(x) (theorem 6).
For example, the nuclear of the uninuclear promolecule 14 is selected as a
core from the set of 12–16 shown in figure 9. Then, after the selection of
the edge p–X1, the uninuclear promolecule 13 is regarded as being superior
to the other 12. Thereby, 12 is deleted by the binuclear promolecule 83 (cf.
theorem 5) so that 13 is left for the next step. Next, because 14 is superior
to 13, the inferior one 13 is deleted by the binuclear promolecule 84 so as
to give 14 as the representative promolecule.

2. As for a balanced 3D-tree, on the other hand, a terminal edge is also
selected to give the corresponding binuclear promolecule and the two rele-
vant uninuclear promolecules. Between the two relevant uninuclear promol-
ecules, the superior one is saved and the other one is deleted (cf. figure 5).
This procedure is repeated by selecting one of the resulting edges so as to
reach the representative promolecule whose nuclear is identical with either
terminal of the balance-edge. The finally saved pair of the uninuclear pro-
molecule and the binuclear promolecule at the one terminal of the balance-
edge is identical with the finally saved pair of the uninuclear promolecule
and the binuclear promolecule at the other terminal of the balance-edge.
Each finally saved pair is cancelled out to give no redundant uninuclear pro-
molecule. No finally saved uninuclear promolecule means that such balanced
trees do not contribute to U (x) = G(x) − C(x) (theorem 6).
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Figure 14. Enantiomeric 3D-trees (99 and 99 and diastereomeric 3D-trees (100 and 101) related to
pseudoasymmetry. Each thick line designates an edge to show the corresponding binuclear promol-
ecule (p–q, etc.).

For example, after the selection of the balance-edge of 32 (figure 5), let us
consider the corresponding uninuclear promolecules 37–39 shown in figure
10. By selecting the edge p—X1, the uninuclear promolecule 38 is regarded
as being superior to the other 37. Thereby, 37 is deleted by the binuclear
promolecule 87 (cf. theorem 5) so that 38 is left for the next step. Next,
because 39 is superior to 38, the inferior one 38 is deleted by the binuclear
promolecule 88 so as to give 39, which is concerned with the one terminal
of the balance-edge of the binuclear promolecule 89. The pair of the uninu-
clear promolecule 39 and the binuclear promolecule 89 vanishes to null. This
situation holds true for the other terminal of the balance-edge.

It follows that the functional equation U (x) = G(x) − C(x) evaluates the num-
ber of unbalanced 3D-trees. That is to say, we have obtained yet another proof
of theorem 6.

4.3.4. Pseudoasymmetry
Because two diastereomeric 3D-trees (or alkanes) in a pseudoasymmetric

case have been treated properly in terms of Fujita’s proligand method, the dis-
cussion for figure 13 holds true even for such a pseudoasymmetric case. It is
worthwhile, however, to mention some comments on how the present method
treats pseudoasymmetric cases.

For example figure 14 depicts enantiomeric 3D-trees (99 and 99) and dia-
stereomeric 3D-trees (100 and 101), which are related to pseudoasymmetry. The
symbols • and ◦ show the core and the substitution positions when each 3D-tree
is regarded as a uninuclear 3D-tree. Each thick line designates an edge to show
the corresponding binuclear 3D-tree (p—q, etc.).
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Figure 15. Binuclear promolecules and the corresponding uninuclear promolecules to show a
pseudoasymmetric case. The top row shows the 1:2-correspondence for 100 and the bottom
row shows the 1:2-correspondence for 101, where we place p = R-CH(CH3)CH2CH3, p =
S-CH(CH3)CH2CH3, X1 = CH3, and X2 = CH2CH3; and the other symbols denote the respec-
tive remaining parts.

One achiral 3D-tree (100) in the pseudoasymmetric case is regarded as a
binuclear 3D-tree (p–q), where one terminal of the edge at issue (thick line) is
substituted by the proligand p (= CHX1X2) and the other terminal is substituted
by the proligand q (= CHpX1), as shown in 102 (figure 15). When we put a focus
on the proligand p (tentatively fixed), we find the corresponding uninuclear 3D-
tree (103). When we put a focus on the proligand q (tentatively fixed), we find
the corresponding uninuclear 3D-tree (104). It should be noted the core (•) of
the uninuclear 3D-tree (103) and that of 104 are different from each other and
they join the edge of 100 as a binuclear 3D-tree (p–q).

These two 3D-trees (103 and 104) are enumerated separately in terms of
uninuclear 3D-trees so as to give redundancy. Hence, the redundancy is deleted
by the enumeration in terms of binuclear 3D-trees. Note that the uninuclear
3D-tree (103) is counted as an achiral 3D-tree, while the uninuclear 3D-tree
(104) and the binuclear 3D-tree (102) are counted as chiral 3D-trees. Because
the binuclear 3D-tree (102) as a chiral 3D-tree is not counted as a contaminant
for C(x)(A), the contribution of the achiral uninuclear 3D-tree (103) to G(x)(A)

remains untouched during the application of theorem 7. As a result, the chiral
3D-tree (100) in a pseudoasymmetric case is counted just once, giving a correct
value of N (x)(A). In contrast, the unnecessary contribution of the chiral uninucle-
ar 3D-tree (104) to G(x)(C) is deleted by considering the binuclear 3D-tree (102)
as a contaminant for C(x)(C) so as to result in no contribution to N (x)(C).

The other achiral 3D-tree (101) in a pseudoasymmetric case is regarded as
a binuclear 3D-tree (p–r), where one terminal of the edge at issue (thick line) is
substituted by the proligand p (= CHX1X2) and the other terminal is substituted
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by the proligand r (= CHpX1), as shown in 105 (figure 15). Note that the
proligand r is diastereomeric to the proligand q (= CHpX1). When we put a
focus on the proligand p (tentatively fixed), we find the corresponding uninuclear
3D-tree (106). When we put a focus on the proligand r (tentatively fixed), we find
the corresponding uninuclear 3D-tree (107). These two 3D-trees (106 and 107)
are enumerated separately in terms of uninuclear 3D-trees so as to give redun-
dancy.

The redundancy for 101 is deleted in a similar way to 3D-tree (100).
Thus the contribution of the achiral uninuclear 3D-tree (106) to G(x)(A) remains
untouched, while the unnecessary contribution of the chiral uninuclear 3D-tree
(107) to G(x)(C) is deleted by considering the binuclear 3D-tree (105) as a con-
taminant for C(x)(C).

5. Comments on earlier accomplishments

The crux of the present work is the concept of sphericity to treat the inner
structure of ligands. Hence, it is worthwhile to discuss earlier accomplishments
from the viewpoint of the sphericity concept.

The pioneering work by Henze and Blair [13] reported the number of alk-
anes of a given carbon content, where the alkanes were regarded as graphs,
not as 3D-objects. Their work was based on recursive equations, which took no
account of the sphericity concept.

Pólya [14] and Pólya and Read [15] evaluated the number of trees as graphs
by means of his main theorem (Hauptsatz). Although his discussions covered
so-called “steric trees” in terms of the counterpart of equation 58, it took no
account of the sphericity concept. In particular, the number of centroidal trees
as graphs was evaluated by the following functional equation (equation 2.50 of
section 51 [14,15]):

s(x) = x

24

(
s(x)4 + 3s(x2)2 + 8s(x)s(x3) + 6s(x)2s(x2) + 6s(x4)

)
. (179)

Obviously, equation 179 is a special case of equation 56 in which we place
s(xd) = a(xd) = b(xd) = c(xd) in the right-hand side. This means the over-
looking of the sphericity concept so that Pólya’s discussions [14,15] did not pay
attention to the stereochemical problems of meso-compounds and pseudoasym-
metric cases.

Later, Otter [33] reported the enumeration of trees as graphs. His approach
was based on the dissimilarity characteristic equation, which provided one of
the most elegant solutions on the enumeration of trees as graphs by means of
generating functions only. However, his approach also overlooked the sphericity
concept and did not pay attention to the stereochemical problems of meso-com-
pounds and pseudoasymmetric cases.



S. Fujita / Combinatorial enumeration of three-dimensional trees as stereochemical models 199

More recently, Robinson et al. [19] reported the enumeration of 3D-trees
by using the dissimilarity characteristic equation of Ref.33. Their treatment,
however, did not take account of the concept of sphericity. For example, they
used the following equation:

x

24

(
s(x)4 + 3s(x2)2 + 8s(x)s(x3) + 6a(x)2s(x2) + 6s(x4)

)
, (180)

which was derived from equation 179 by geometrical examination (equation 18
of Ref. 19). Obviously, equation 180 is a special case of equation 56 in which
we place s(xd) = b(xd) = c(xd). This means that b(xd) and c(xd) are mixed up,
although a(xd) is differentiated from s(xd) = b(xd) = c(xd). In other words, the
use of equation 180 means the overlooking of the concept of sphericity.

Moreover, the functional equation (equation 22 of Ref. 19):

N (x)(A) = 1
2

{
a(x) + xs(x4) + s(x2)

} − 1, (181)

was used even in the case where equation 136 would be required if the spheric-
ity concept was taken into consideration. Because equation 181 is a special case
of equation 136 by placing s(xd) = c(xd), the two sphericity indices, i.e., b(xd)

(= s(xd)) and c(xd), are again mixed up.
As a result of the mixing-up of b(xd) with c(xd), the stereochemical prob-

lems of meso-compounds and pseudoasymmetric cases were not treated properly.
Thus, the two modes of transitivity ascribed to c(xd) (e.g., p/p and p/p for d =
2), which are keys of comprehending the stereochemical problems, were replaced
by other two modes of transitivity ascribed to b(xd) (e.g., p/p and p/p for d = 2).

Because the modes of transitivity due to b(xd) (e.g., p/p and p/p) are con-
cerned with chiral ligands, equation 181 means that its right-hand side is evalu-
ated by such modes as p/p and p/p without the compensation of chirality, while
its left-hand side aims at evaluating achiral 3D-trees. As a result, both the sides
of equation 181 are inconsistent with respect to achirality/chirality, although
equation 181 fortunately gave the same results as the present ones using equation
136. This apparent equivalence comes from the fact that the molecular formulas
of p and p are equal by considering their carbon contents only.

6. Conclusions

The 3D trees, which are defined as a 3D extension of trees, are enumerated
by Fujita’s proligand method [16–18], which is based on CI-CFs composed of
three kinds of SIs, i.e., ad for homospheric cycles, cd for enantiospheric cycles,
and bd for hemispheric cycles. Such 3D-trees are regarded as uninuclear promol-
ecules and enumerated to give the gross number of 3D-trees, which suffers from
the redundancy due to contaminants. The 3D-trees are alternatively regarded as
binuclear promolecules and enumerated to evaluate the number of such
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contaminants. The uninuclear promolecules and the related binuclear ones are
compared in terms of the dichotomy between balanced 3D-trees and unbalanced
3D-trees Thereby, the redundancy due to such contaminants is deleted effec-
tively so as to give the net number of 3D-trees, where we take account of such
problems as encountered in organic stereochemistry, i.e., meso-compounds and
pseudoasymmetric cases. The validity of this procedure is proved in three ways,
all of which are based on the respective modes of the correspondence between
uninuclear promolecules and binuclear ones. In order to enumerate 3D-trees by
following this procedure, the CI-CFs are applied to derive functional equations,
which are composed of a(xd), c(xd), and b(xd) in accord with the SIs. Thereby,
the numbers of 3D-trees or equivalently those of alkanes as stereoisomers are
calculated under various conditions and collected up to 20 carbon content in a
tabular form. Now, the stereochemical problems (on the number of stereoisom-
ers) by van’t Hoff [1] and LeBel [2] and the enumeration problems (on the num-
ber of trees) by Cayley [3,4], both initiated in the 1870s, have been solved in a
common theoretical framework, which satisfies both chemical and mathematical
requirements.
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